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Machine learning and the questions it raises

G. Andrew D. Briggs and Dawid Potgieter

Machine learning is a lively academic discipline and a key player in the continuous pur-
suit for new technological developments. The editorial in the first issue of the journal
Machine Learning, published in March 1986, described the discipline as that field of
inquiry concerned with the processes by which intelligent systems improve their per-
formance over time, while recognising that it was hard to be more specific than the
central tendency of the field (Langley, 1986). A glossary of terms published in the same
journal in 1998 refined this to: Machine Learning is the field of scientific study that con-
centrates on induction algorithms and on other algorithms that can be said to “learn”
(Kohavi and Provost, 1998).

Thomas J. Watson, the brilliant salesman who from 1914 to 1956 oversaw the re-
markable growth and success of IBM – serving as both CEO and Chairman, was fa-
mously quoted as saying in 1943, “I think there is a world market for maybe five com-
puters”. With more than one billion computers now in use worldwide (Virki, June 23
2008), this quote is often referenced to illustrate how vastly their usefulness had been
underestimated. No area of computer science is making progress more rapidly than ma-
chine learning, with computers being capable of tasks that were a few decades ago only
mentioned in science-fiction stories. Watson brought to IBM from his previous em-
ployment his trademark motto “THINK”. It would at the time have been reasonable for
Watson to suppose that only humans could really THINK. While computers could sur-
pass humans in adding, subtracting, multiplying and dividing, they were hardly thought
of as being good at human tasks, such as playing chess, which required thinking. This
begs the question, “What is thinking”. In February 1996 World Chess Champion Garry
Kasparov took on the IBM computer Deep Blue in Philadelphia. Even with the IBM en-
gineers allowed to reprogram the computer between games, the World Champion won,
but only just, losing one game, drawing two, and winning three. His victory was short
lived. The following year he played a rematch. With the score even after the first five of
six games, Kasparov allowed Deep Blue to commit a knight sacrifice, which wrecked
his Caro-Kann defences and forced him to resign in fewer than twenty moves.

It might be thought that playing chess is the kind of human thinking that is well-
adapted to a digital computer, in which a computer can employ techniques for which
the human brain is ill suited. A task for which the human eye-brain combination is su-
perbly suited is facial recognition. It is not hard to understand why such expertise should
be useful as humans organised themselves into hunter-gather groups, or even earlier. It
is also not hard to think why such a task should be extraordinarily di�cult for a digital
computer. There are countless variations of lighting, viewing angle, mouth expressions,
and other parameters. The advances have been made possible by a combination of raw
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computing power, vast data sets, and clever algorithms. At Heathrow airport iris scans
have been superseded by comparison of what the camera sees with the picture stored
in an e-passport. This is faster and more reliable than an experienced immigration of-
ficer, and as secure as the fingerprint method still used by US immigration authorities.
Even voice recognition, which for years was the source of endless frustration for vic-
tims of automated telephone systems, can now be more accurate and more versatile
than a human listener. The rest of this chapter will reflect on two areas of timely en-
quiry. By drawing from selected findings in neuroscience, the first part will explore to
what extent we might expect computer processors to mimic the information processing
mechanisms of the brain, an endeavour often referred to as neuromorphic technology.
Recent findings in this area may provide deeper insights into information transfer in the
brain and how such processes relate to machine learning. The second part will reflect
on deeper questions, practical, ethical, and philosophical, which will inevitably need to
be addressed as the learning capacity of machines continue to surpass that of humans
in more and more ways.

The human brain uses very similar learning mechanisms to the brains of other mam-
mals. This chapter will include findings from rodents and non-human primates from
which more experimental data have been collected.

The human brain is arguably the most complex object in the known universe, the
only “pound of flesh” taking credit for trying to understand itself. The mechanisms by
which brains process information have for decades inspired computer scientists. When
describing brains in terms of computation, neurons are often likened to wires. This
metaphor may be useful in its simplest form: just as electricity flows from one wire to
the next, an electrical signal can propagate along one neuron and be passed to another.
Such a metaphor can also, within limited context, be extended to describe neural circuits
as electric circuits and the brain as a very clever computer. But, the metaphor eventually
fails. Connectivity between two neurons is not always constant, as it is with wires, but
can vary depending on several factors, including the frequency of neurotransmission.
This feature, called synaptic plasticity (see Table 18.1 for definitions), allows neurons
to store and process information at the same time, thus integrating both memory and
processing power, which are handled separately in computers.

Engineers have optimistically tackled the problem of mimicking synaptic plasticity,
and memristor-based devices have been able to achieve this to some extent (Li et al.,
2014). The prospect of building synapse-like computational devices therefore seems
hopeful, but is this enough to build a computer which works like a brain? And if not,
then what other mechanisms must be mimicked to achieve such a goal? The following
observations may illustrate why the answer to the former question is ‘no’, and o↵er
some reflections on how we might explore the answer to the latter.

Neurotransmission involves more than ‘on’ or ‘o↵’ signals. The kind of
synapse which a memristor-based device might mimic makes use of ionotropic re-
ceptors, which, when bound by a neurotransmitter, either excite or inhibit the elec-
trical activity of a recipient neuron. However, biological neurons also make use of
metabotropic receptors, which may have little or no immediate e↵ect on electrical ac-
tivity, but do a↵ect the cell over longer timescales. When metabotropic receptors are
bound by a neurotransmitter, the downstream e↵ects are mediated through a wide range
of mechanisms available to the cell, including signalling cascades, metabolic activity,
and changes to gene regulation (Diagram 1). Neurotransmission through metabotropic
receptors play a crucial role in information processing. Dopamine for example, a neu-
rotransmitter implicated in learning, decision-making, and movement, acts at D1- and
D2-type metabotropic receptors (Beaulieu et al., 2015).
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Table 18.1 Neuroscience Terms and Definitions

Term Definition

Dopamine A compound present in the body as a neurotransmitter;
dopamine neurotransmission is implicated in learning,
decision-making, and movement

En passant varicosities Swellings along the length of an axon which do not al-
ways form a synapse, but they can sometimes release a
neurotransmitter

Globus Pallidus Part of the forebrain, located beneath the cerebral cortex
towards the middle of the brain

Ionotropic receptors Receptors that act as ion channels across the neuronal
cell membrane, thereby changing the neuron’s electrical
conductivity

Metabotropic receptors Receptors that act through signal transduction mech-
anisms inside the cell; such mechanisms may involve
changes to metabolic processes or gene expression

Neural activity Electrical activity of a neuron or cluster or neurons

Neuron A specialised cell that carries electrical impulses; neu-
rons make up less than half of the cells in a human brain

Neurotransmission The release of a chemical from a neuron in order to send
a message to other cells

Striatum Part of the forebrain, located in humans between the
globus pallidus and the cerebral cortex

Synapse A structured junction between two neurons consisting
of a small gap across which neurotransmitters can dif-
fuse

Synaptic Plasticity A change in the likelihood or e�ciency of neurotrans-
mission due to the frequency of its prior occurrence or
other factors

Somatodentritic A subcellular region of a neuron which normally re-
ceives signals from external neurotransmitters without
sending any signals; the soma contains the cell nucleus
where DNA is stored and transcribed

Information spreads beyond the synapse. The traditional metaphor that likens
neurons to wires relies on neurotransmission occurring at distinct isolated regions called
synapses, acting on one recipient neuron without spreading significantly to others.
However, neurotransmission can, in some cases, spill over the synapse to influence
multiple neurons in the vicinity. Dopamine released in the striatum, for example, has
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Figure 18.1 A) Cartoon to illustrate the simplified model of neuron func-
tion. A signal is received at the dendrites or cell body, the signal propagates
along an axon, and is passed to another neuron at the synaptic junction. B)
An illustration of more complicated signalling mechanisms which are found
in biological neurons. Activation of metabotropic receptors (a) leads to a va-
riety of e↵ects, including changes to gene regulation, protein expression, and
metabolic processes. Activation of ionotropic receptors (b) leads to excitation
or inhibition of action potentials. Neurotransmitter release has been observed
from somatodendritic regions (i), and en passant along unmyelinated axons
(ii). Di↵erent kinds of neurotransmitter release has been observed at synap-
tic boutons, including release which spill over significantly from the synaptic
junction (iii), as well as release triggered at the synapse (iv) through activa-
tion of presynaptic membrane receptors.

been shown to di↵use into the extracellular space beyond the confines of the synapse
(Cragg and Rice, 2004). Neurotransmission is also not limited to taking place at synap-
tic structures, but has been observed from somatodendritic parts of the neuron (Rice
et al., 1997) and it has been suggested to take place at en passant varicosities along
the length of an axon (Hattori et al., 1991) (See Fig. 1). Moreover, the axonal branches
of a single dopamine neuron, the kind which might release dopamine from en passant
varicosities, can spread out to innervate more than five per cent of the volume of stria-
tum (Matsuda et al., 2009). This is because the axon branching is so extensive that if
all branches of one such a neuron – from a rat brain – were connected end to end,
the resulting structure would be nearly 80 cm in length (Matsuda et al. 2009). Taken
together, these observations create a di↵erent perspective from one of the brain being
like a collection of electrical wires connected end to end. Neurotransmitter release is
more varied than that and can, in some neurons, take place beyond the confinement of
synapses.
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Information is coded at di↵erent levels – beyond the scale of the synapse.
The traditional metaphor of the brain as a computer implies that information is em-
bodied in an electrical signal which is passed from one neuron to another. However,
information can a↵ect di↵erent scales in the brain. For example, rhythmic neural activ-
ity, synchronised between multiple neurons in the globus pallidus, plays a crucial role
in initiating goal-directed movement (Little and Brown, 2014). This kind of activity is
composed of a collection of single action potentials, but it is not any action potential in
particular, or even the sum of action potentials, but rather the synchronous and rhyth-
mic nature of such action potentials, which plays a crucial role. Moreover, di↵erent
frequencies of rhythmic activity, have been shown to play distinct roles in goal-directed
actions (Brinkman et al., 2014). Such synchronous activity can therefore be thought of
as an emergent phenomenon, and demonstrates that information processing within the
brain can take place at di↵erent scales, which broadens the repertoire of information
processing mechanisms available to the brain.

Neural circuits have large-scale redundancies. Computers and brains both em-
ploy error correction mechanisms, but the brain has a remarkable capacity to compen-
sate functionally for the loss of neurons. Parkinson’s disease is a degenerative condition
in which the capacity to initiate goal-directed movements is a↵ected. When a patient
exhibits enough movement-related symptoms to be diagnosed, roughly half of the most
vulnerable population of neurons have already died (Fearnley and Lees, 1991). By con-
trast, only a specially designed computer, such as the Hewlett-Packard Teramac built
in 1997, would be immune to failure of even a small fraction of its components (Heath
et al., 1998). The fault tolerance of Teramac however, relied on a 24-hour-long proce-
dure during which a separate workstation identified all defective resources and wrote
their locations to a configuration table as being ‘in use’ (Birnbaum and Williams, 2000).
In essence, Teramac required the help of another computer to make sure it could start in
spite of its faulty components. Brains are of course much more versatile in this sense.
Unlike wires and transistors, which tend to need replacing when broken, the connec-
tions between neurons can change and grow dynamically without the need for invasive
intervention. The biological mechanisms which underlie brain function can compen-
sate for (a certain level of) failures whenever they occur. In the case of some forms of
brain damage, such as the kind of cell death su↵ered during a stroke, the neurons sur-
rounding a damaged area can ‘rewire’ themselves by sprouting new axon branches and
making new connections to other cells (Dancause et al., 2005). In the case of degen-
erative diseases such as Parkinson’s, the surviving neurons can increase the amount of
dopamine output until they too become dysfunctional. Other neurons which normally
release serotonin can also begin to release dopamine, albeit sometimes inappropriately
(Tanaka et al., 1999).

Some neurons release more than one type of neurotransmitter. It has been
suggested that some neurons release both excitatory and inhibitory neurotransmitters
(Gutiérrez, 2005), which may increase the repertoire of possible signals being transmit-
ted between neurons (Seal and Edwards, 2006). Although such a mechanism may not
serve both to excite and to inhibit the same recipient cell, as doing so would be counter
productive, it is feasible to imagine the neurotransmission from a single neuron exciting
some recipient neurons and inhibiting others. Such a function could be achieved either
by the recipient neurons being restricted in the receptors they express, or by the di↵erent
neurotransmitters being located in di↵erent and adequately separated axonal branches.
The capacity for neurons to release more than one neurotransmitter also extends the
potential for di↵erent possible computations. Input to a single neuron does not lead to
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a single output or even many outputs of the same kind, but to multiple, and possibly a
range of, di↵erent kinds of outputs.

Not all action potentials lead to neurotransmitter release. A single action
potential contributes only to the probability of neurotransmitter release. For some neu-
rons, there is a high probability that a single action potential will result in neurotrans-
mitter release, but for others the probability can be very low, allowing additional fac-
tors to influence neurotransmission. For example, neurotransmission from dopamine
axons in the striatum is influenced both by the frequency of action potentials and by
the concentration of another neurotransmitter around the axon terminal, namely acetyl-
choline (Zhang and Sulzer, 2004) (See Diagram 1). The amount of dopamine released
by these neurons is strongly proportional to the frequency of action potentials when
acetylcholine is absent. The higher the rate of action potentials, the more dopamine will
be released. However, when a significant concentration of acetylcholine is present, then
the magnitude of dopamine release is changed such that action potentials at both low
and high frequencies lead to a moderate amount of dopamine release. Moreover, the
synchronised activation of acetylcholine neurons, when surrounding dopamine axon
terminals, is su�cient to cause dopamine release without any action potentials being
present at all in the dopamine neurons (Threlfell and et al, 2012). These findings sug-
gest that some neurons behave almost like a logic gae, or rather – since the neurons in
question also branch out across a relatively large volume of the striatum (Matsuda et
al. 2009) – some neurons can behave like a collection of di↵erent logic gates. Whether
such a collection acts in unison or whether each neuron acts independently is not com-
pletely understood. Taken together, the observations presented here testify that a simple
model which describes the brain in terms of a bunch of interconnected electrical wires
is out-dated, which may in turn suggest new directions for machine learning.

Our understanding of the brain is becoming increasingly sophisticated. Mammalian
brains, and primate brains in particular, utilise an immense repertoire of mechanisms
for processing information. Engineers who aim to build computers which utilise the
same mechanisms as brains will have to continue developing more complex technolo-
gies, but taking on such a task for the purpose of building better computers may be
both overambitious and unnecessary. Trying to understand every biological mechanism
in the brain for the purpose of building a computer might be a bit like researching the
type font and ink composition of a book simply to quote a paragraph from it. How
then should scientists approach machine learning in relation to the human brain? The
evidence presented here suggests three approaches. First, the di↵erent scales at which
brains process information remain incompletely understood, and warrant continued in-
vestigation. How much of the information processing takes place through molecular
interactions within a cell? How much takes place through electrical signals passed be-
tween individual neurons, and how much takes place through the synchronised rhyth-
mic activity of large groups of neurons? Alongside research into scales of information
processing, come questions about the hierarchy of algorithmic processes. Computers
make use of a hierarchy of algorithmic processes, but the brain’s capacity for algorith-
mic processes remains incompletely understood. Can the function of a healthy human
brain can be reduced a set of district algorithmic processes, and how? Information is
not only processed by electrochemical activity between neurons, but might also involve
complex molecular interactions inside single neurons. It may therefore be di�cult to
determine where the boundaries lie between hierarchies of algorithms.

Second, we need a deeper understanding of the full repertoire of computational
mechanisms available to the brain. More accurate models of brain function will pro-
vide a foundation constructing new models of neural processes. For example, a neu-
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ron which only releases glutamate, and only does so at synaptic structures, might be
modelled as a wire with plasticity at the synapse – but a neuron which releases both
glutamate (excitatory) and GABA (inhibitory) could be modelled as two circuits with
the same inputs, but opposite output states and di↵erent output connections.

Finally, progress in machine learning may be made by looking at the function of bio-
logical mechanisms rather than aiming to build synthetic versions of the same hardware.
For example, the memristor-based devices which were created as a synthetic alternative
to synaptic plasticity (Li et al., 2014) will not necessarily be able to serve the function
of a biological synapse. The latter is diverse, as biological mechanisms tend to be. Neu-
rons can achieve plasticity through a range of signalling molecules binding at a variety
of receptors, thereby triggering changes which include genetic expression, the reloca-
tion of proteins, and the regulation of their activity (Citri and Malenka, 2008). On the
other hand, memristor-based devices – and semiconductor materials in general – tend
to be much simpler in their construction and more limited in the variety of actions that
are available at a molecular level. An individual neuron may not be just a component of
a computation, but might perform a complete computation. Conversely, computations
take place not just within individual neurons, but also between neurons, and sometimes,
the activity of a single neuron is redundant. The constraints and resources available to
biological organisms di↵er from those which are available in the laboratory. Electronic
devices can perform similar information processing as brains by di↵erent – and possi-
bly more e�cient – mechanisms. The best goal may not be to build a computer with
the same capacities as a brain, but rather to develop a range of machines, each capable
of outperforming human brains in di↵erent ways.

Quantum Computers are utterly di↵erent from classical computers, and for certain
tasks they can be exponentially better. At the core of machine learning lies probabil-
ity theory, Bayesian theory in particular. To learn involves inference of probabilities
over variables of interest and this is underpinned by two key operations; optimisation
and numerical integration. Both scale poorly with the complexity of the models used
and indeed with the amount of data. Classical computation cannot resolve this curse of
dimensionality. Quantum computation o↵ers an avoidance for such problems; indeed
work in Information Engineering at the University of Oxford has shown that classical
inference ground energy states in a quantum system are equivalent; furthermore quan-
tum algorithms, inspired by classical sample-based inference, can also be developed to
replace the most used classical inference algorithms (Fox et al., 2008). Unusually for
quantum information processing, these algorithms depend for their e↵ectiveness on de-
coherence to disperse unwanted information into surrounding coolants. If the algorithm
provides a useful computational speedup then maybe evolution would have found a way
to use it; it is an empirical question whether this is actually the case. There is a subneu-
ronal computation theory that could be extended to perform this kind of MRF inference,
making use of biological coolants flowing through microtubules to provide the neces-
sary decoherence. Quantum methods have been proposed to reduce the vastness of the
data sets which have proved crucial for machine learning, using superposition states not
only of the information itself but also of the address switches used to retrieve data from
classical memories (Lloyd et al., 2013). This would yield a logarithmic reduction in the
amount of memory required to store the quantum information.

Having briefly reflected on which lines of enquiry might help us to build better ma-
chines, the remainder of this chapter will focus more broadly on a few related ques-
tions. Information is not just a set of bits, or even bits that convey semantic meaning,
but information can have a causal power given the appropriate conditions. In the con-
text of machine learning, the causal power of information is increasing dramatically,
which can have significant implications for humanity. The industrial revolution saw a



Machine learning and the questions it raises 327

huge increase in our productivity through the power of machines. But humans were
still very much in control. We now approach technological advances which allow for
humans not necessarily having to be in control; machines are gaining autonomy. Al-
though machines can process information well enough to become less reliant on human
decisions, machines lack information for concepts like ‘good’ and ‘bad’. They do not
have a framework for morals or values as we understand these concepts, or in fact, as
philosophers still debate them. The questions discussed in this section explore some of
these broader implications of recent advances in machine learning. The day may be not
far o↵, indeed it may already be here, when machine learning advances to the point of
creating new challenges to humans, for example, by undertaking tasks which tradition-
ally we might have ascribed to human judgement. A machine might learn enough to be
able to analyse the information in a company’s accounts to the standard of an experi-
enced accountant. It might not only be able to answer the key question of an audit: are
these accounts a true and accurate statement of the financial a↵airs of the organisation?
It might be able to do more: what changes might increase the profitability or reduce the
tax liability?

The rapid advances in information processing by machine learning raises questions
which are better tackled sooner rather than later.

1 What will be the implications for human work of machine learning? Every pre-
vious advance in information processing, indeed in technology generally, has re-
sulted in changes to human employment (Uglow, 2003). The mechanisation of agri-
culture led to urbanisation. The industrialisation of pottery making led to factory
working. The results were a mixture of poverty and deprivation for the unemployed
in cities, and steady wages and prosperity for many employed in factories. Nine-
teenth century England saw both at the same time. The computerisation of banking
and financial services in the twentieth century removed the need for large numbers
of people in clerical work. At its best it liberated them to use their brainpower for
more interesting knowledge-based work. Will machine learning do that? Certain sur-
gical operations can be performed better by a robot than even the best trained pair
of human hands (Badani et al., 2007), thus enabling more accurate surgery to be
performed and liberating the surgeon to concentrate on higher level tasks of diag-
nosis and treatment planning. Already people tend to be more honest about their
potentially-embarrassing activities which led to sickness when answering questions
for a computer rather than a clinician. What if the day comes when machines can
outperform surgeons at diagnosis, treatment planning, and all surgical procedures?
What higher level activity will then be left to the consultant? More positively, how
can technological advancements such as these be leveraged to bring about the most
good to society? Much of the work mentioned in this book, and elsewhere (Mir-
momeni et al., 2014), explore the idea that information ? and in particular, having
the correct information and the capacity process it well ? can be conceptualised as
making a key contribution to the survival and evolution of an organism. Biological
evolution of humans is a very slow process, and one with which we should not inter-
fere. However, the capacity of machines to process information is growing rapidly,
and vastly exceeds the rate of evolution of humans. Can society benefit from en-
gaging with such technological advances as progress that benefits our species as a
whole? Can such an approach inspire more people to create helpful technologies that
will change the way that people work even more that the industrial revolution did in
the 18th century?

2 Who will set the hierarchy of goals for machine learning? At present the pro-
grammer sets the goals: compare that face with the record in the e-passport; tran-
scribe this speech into text. In 2014 TheySay, a spin out company from Oxford Uni-
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versity, algorithmically analysed the sentiments of YES and NO supporters leading
up to the referendum vote about whether Scotland should leave the United King-
dom (Morgan, March 10 2015). Harvesting text from social media, news, blogs and
chat rooms, the machine used over 68,000 rules to determine the grammatical con-
tent of the text. It was then able to extract and assign meaning and provide insights
about sentiment (positive or negative), emotions (fear, anger, happiness and sadness),
and sureness (certainty and confidence), thus building up a picture of outrage, ner-
vousness, despondency and joy. These goals were set by humans for the purposes
which they wanted to achieve. What happens when powerful machines like these
are programmed for maleficent purposes? The legal and ethical framework which is
required to safely use new technology is sometimes developed much later than the
technology itself. For example, one of the world’s largest mass multiplayer online
(MMO) computer games, Eve Online, has su↵ered losses of tens of thousands of
US dollars because the technology was developed without a system to ensure ethical
behaviour and justice. Some players stole online game credits from other players,
which were then traded in for cash. The largest recorded theft was worth over US
$51,000 (Drain, October 28 2012). How can we learn from this sort of dilemma?
What might happen if we develop machines with the information processing power
to set their own goals, but without the necessary framework to do so responsibly?
Should goal-setting for machines be pre-emptively regulated? If so, how it should be
done?

3 What is the meaning of responsibility in machine learning? The December 2014
issue of Nature Nanotechnology carried a thesis piece entitled “Could we 3D print
an artificial mind”? (Maynard, 2014). The final paragraph concluded, “Which leads
us to a question that is, if anything, more di�cult to address than the aforementioned
technical hurdles: if our technological capabilities are beginning to shift from the
fanciful to the plausible in constructing an artificial mind that has some degree of
awareness, how do we begin to think about responsibility in the face of such au-
dacity?” One of us wrote to the author to ask him whether this final paragraph was
simply a rhetorical flourish with which to end the piece, or whether these were is-
sues about which he had been thinking deeply. He replied that his intent was to finish
with a link to his broader work, which revolves around emerging technologies and
responsible innovation. The responsibility he was referring to is that incumbent on
the various societal actors who may be involved in the development and use of tech-
nologies that could lead to artificial minds or similar. He confessed that he had not
thought about responsibility from the perspective of the artificial mind in the piece.
He acknowledged that this is an intriguing avenue to go down, which touches on
some of the current philosophical work around artificial general intelligence .

4 Could machine learning constitute a threat to our existence? The Oxford philoso-
pher Professor Nick Bostrom thinks so. “If machine brains surpassed human brains
in general intelligence, then this new superintelligence could become extremely pow-
erful – possibly beyond our control. As the fate of the gorillas now depends more
on humans than on the species itself, so would the fate of humankind depend on
the actions of the machine superintelligence? (Bostrom, 2014). In January 2014
at an FQXi conference in Vieques on The Physics of Information, the director,
Professor Max Tegmark, initiated a straw poll among the participants to ask what
they considered to be at present the greatest risk to the survival of the human race
[http://fqxi.org/conference/2014]. The obvious suspects, such as global climate change,
came rather far down the list. Second from top was the threat from synthetic biol-
ogy: the risk that some maverick, or perhaps some future child who had been given
a gene splicing kit for Christmas, might produce a virus to which humans could
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produce insu�cient immunity. The highest threat was perceived to come from arti-
ficial general intelligence . Dilemmas in this area were foreseen as early as 1942 in
Iszaac Azimov’s short story, Runaround, in which machines have to obey three laws
loosely paraphrased as: (1) never letting a human come to harm; (2) obeying orders,
unless rule 2 conflicts with 1; (3) preserving itself, unless rule 3 conflicts with 1 or
2. In the story, a robot which was very expensive, and therefore programmed with
a priority to preserve itself, is ordered to go on a dangerous mission which leads
to a conflict between rules 2 and 3. The robot consequently malfunctions, and does
so nearly to the peril of humans. That story was no more than fiction. Is the day
approaching when such fiction might become reality? What if machines could not
only be cleverer than humans but could adopt goals which were malevolent (again to
beg the question) towards humans? So-called ‘algorithmic self-improvement’ might
runaway and produce systems that greatly exceed human intelligence in ways that
might not be human friendly. The long established philosophical tools of decision
theory may be relevant for addressing questions of goal stability under algorithmic
self-improvement. Could we run simulations on machine learning to predict whether
such goals will evolve? If machine learning can in principle threaten human exis-
tence, then how can we find the best way to prevent such a threat? Could machine
learning be programmed to act with character virtues such as humility, forgiveness,
and kindness?

5 Where is wisdom to be found for machine learning? If machines can learn to be
as intelligent as humans, can they also learn to be as wise? What would it mean to
describe computing as wise? Would it involve being morally careful or perceptive?
Would it make sense to ascribe attributes of wisdom to a machine only if one could
also ascribe attributes of foolishness? At the meeting of the American Association
for the Advancement of Science in San Jose in February 2015, a session was devoted
to Wise Computing. Professor Kazuo Iwano, of the Japan Science and Technology
Agency, introduced the session under its original title of Wisdom Computing (Iwano,
2015). He described how research activities in Japan are working to understand and
develop wisdom by sublimating distributed and heterogeneous data and information.
Humans are capable of accessing more information than ever in real time, but can
we claim that we have become wiser than ever individually or collectively? Machine
learning is attaining enormous capabilities in accessing and analyzing information
and controlling objects such as airplanes and automobiles. Iwano presented a chart
with the abscissa indicating on a logarithmic scale the duration of information, and
the ordinate indicating the extent of its dissemination. Text messages scored poorly
on both scales. Shakespeare scored highly on both. Top of all came the Bible. Could
machines indeed acquire wisdom by learning from sources of spiritual information
such as the ancient scriptures? If machines can learn to be wise, then what would that
look like? Could ‘machine wisdom’ become an integral part of technology as ma-
chines gain greater capacity for performing new tasks, and outperforming humans?
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