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This paper discusses theoretical aspects of the V(z) response of the
scanning acoustic microscope (s.a.m.) when used to examine specimens
with lateral discontinuities. The problem is introduced in terms of a
simple ray model to establish a physical picture of the processes involved.
An approximate Green function is then developed which enables use of
a modified form of the Fourier optical formulations to calculate V(z) for
a cylindrical lens. These calculations explain two different types of
contrast observed when imaging specimens in the reflection s.a.m., such
as (i) the ability to image fine discontinuities and display them with
enhanced contrast and an apparent width determined by the acoustic
wavelength ; and (ii) to give a quantitative account of the amplitude of
periodic ripple often observed running parallel to cracks on acoustic
micrographs. Both these types of contrast may be predicted by using the
same model and arise naturally from variation of the reflection and
transmission properties of the discontinuity, the relative value of these
parameters determines which type of contrast predominates. At an
interface between media with different elastic properties, the contrast is
affected not only by the scattering properties of the boundary but also
by the very fact that surface waves must propagate in media with
different elastic properties. This effect alone can provide a powerful
contrast mechanism which enables one to understand the light to dark
contrast reversals often observed at grain boundaries in polycrystalline
specimens at different values of defocus.

1. INTRODUCTION

When the reflection acoustic microscope is used to image solid objects such as
integrated circuits and grain structure, the contrast between different parts of the
object arises from the dependence of the output voltage, V, upon the defocus of
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30 M. G. Somekh and others

the specimen, z (Quate et al. 1979). Different parts of the object will give different
V(2) dependences and will therefore show differing object brightness in the image.
Often a dominant role in the determination of the contrast is played by the
excitation of Rayleigh waves upon the surface of the specimen by the field incident
from the couplant (usually water). The Rayleigh wave re-radiates sound into the
couplant that returns to the transducer, which is added vectorially in the
piezoelectric element to the acoustic field geometrically reflected from the object
surface to produce the output voltage (Parmon & Bertoni 1979). The V(z) in the
region above the focus is different for each material or crystallographic orientation
because the relative phase of the geometric and Rayleigh fields depends upon the
Rayleigh velocity. When imaging at a given defocus, the output voltage and hence
the image brightness for each portion of the object surface depends upon the value
of V(z) of the material present.

When the microscope is scanned over a region near to discontinuities in the
object, such as a grain boundary, a crack or the edge of a deposited surface layer,
the Rayleigh wave propagating away from the axis of the lens will be disturbed
by the discontinuity. Broadly speaking, two types of image are observed in regions
close to discontinuities, they may be described as either ‘long-range’ disturbances
or ‘short-range’ disturbances. Long-range disturbances were first described by
Yamanaka & Enomoto (1982), in which ripples were observed running parallel to
a deep crack; the periodicity of these ripples was half the leaky Rayleigh
wavelength, indicating that the acoustic microscope was detecting a standing wave
pattern in the Rayleigh wave excitation. The interference was between the forward
propagating leaky surface wave and that reflected from the crack. When the
microscope is located directly over the discontinuity the propagation of leaky
Rayleigh waves is disrupted so that the V(z) may be strongly affected (Ilett et al.
1984). One result of this disruption is that surface-breaking cracks in an otherwise
smooth surface may appear as dark areas against a light background, or as light
areas against dark, depending upon the defocus. When the specimen is imaged at
a defocus corresponding to a maximum of V(z) for the continuous substrate a crack
will generally appear dark: when imaging at a minimum it will usually appear
bright. This short-range disturbance provides a powerful imaging mechanism in
the s.a.m. because cracks with an opening displacement considerably smaller than
the acoustic wavelength may be detected when they disturb the propagation of
Rayleigh waves. For reasons that will become apparent later, we will designate
contrast due to reflection at discontinuities as ‘long-range’ even when we are
imaging close to the crack; in other words, long-range contrast is that contrast
whose mechanism enables the presence of the crack to be observed a considerable
distance away from the discontinuity.

To understand how discontinuities influence the image, the variations in the
output voltage of the microscope when discontinuities are present in an otherwise
uniform surface have been modelled. A simple approach to this problem has
previously been taken for a cylindrical lens directly over a crack (Ilett et al. 1984).
Calculations for the three-dimensional case of a spherical lens with a crack passing
through its axis have been made by Cox & Addison (1984), by usinga semi-numerical
technique. In the present paper, however, we are concerned with the general case
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Imaging of surface discontinuities with s.a.m. 31

when the lens is at an arbitrary position relative to the crack, and for this purpose
we have again considered the two-dimensional case of a cylindrical lens. By using
this model we have been able to provide a theory which explains both the long-range
and the short-range imaging behaviour of the microscope. The specimen surface
is depicted in figure 1, where the discontinuity lies in the plane x = @,. For a grain
boundary or a bonded interface between two different materials the elastic
properties on either side of the discontinuity differ; for a crack, the material on
either side may be the same. Both cracks and interface boundaries are treated here.
The vertical position, z, of the surface is measured relative to the focal plane,
negative values of z corresponding to movement of the specimen towards the lens.
To simplify the analysis the case of a cylindrical- or line-focus lens is treated. This
renders the field problem two-dimensional and means that the leaky Rayleigh
waves are only incident upon the discontinuity at normal incidence.
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FreurEe 1. Schematic diagram of specimen, defining coordinate system and crack position.

The analysis uses Fourier optics to describe the propagation of the fields from
the transducer to the object surface. To compute the field reflected by the object,
we develop an approximate Green function integral that relates the field propagating
back into the couplant at each point of the object surface, #, to the fields incident
at all points of the surface, &’. The Green function for a surface with a discontinuity
is obtained by generalizing the corresponding Green function for a smooth surface.
This latter Green function is obtained by using the approach described by Saad
et al. (1974), which separates the plane-wave reflection coefficient into a geometric
and a leaky surface-wave part. The generalization of the smooth-surface Green

This content downloaded from 129.67.86.254 on Firi, 26 Feb 2016 17:05:55 UTC
All use subject to JSTOR Terms and Conditions




32 M. G. Somekh and others

function to accommodate the presence of a discontinuity is most easily performed
in the spatial (¥, #’) domain. Subsequently the Green function is transformed to
the spatial frequency domain, (k,, k) so that Fourier optics can be used throughout
this analysis. Here k, and k;, are the 2 components of the wave vector in Fourier
space of the reflected and incident fields respectively. The presence of scattering
at the discontinuity means that the amplitude and phase at each value of k,
depends on the amplitudes and relative phases of all the Fourier spectral
components of the incident field, whose wavenumbers are designated by k.

2. APPLICATION OF SIMPLE RAY THEORY

In this section we shall describe how a discontinuity can affect the contrast in
the s.a.m. by perturbing the propagation of a Rayleigh wave along the surface of
a specimen. We first describe the effect of a crack or grain boundary upon the
contrast of the s.a.m. in terms of a simple ray model, which has the virtue of giving
a very clear physical picture. To develop a more quantitative understanding of
contrast from such discontinuities we shall find that we need to assess the
proportion of the energy propagating along the specimen in the form of Rayleigh
waves. This is discussed in §3.

It has long been established that the response of the scanning acoustic
microscope for negative defocuses is dominated by excitation and re-radiation of
leaky Rayleigh waves. A ray picture describing this V(z) phenomenon considers
that two principal rays make a significant contribution to the output response of
the transducer. The first of these contributions is a result of the pencil of rays
reflected directly from the specimen surface, shown asray A of figure 1. The second
significant contribution is depicted as ray B in figure 1, which results from rays
incident from the liquid at or close to the angle 0y, = arcsin (V,,/ Vg,) where V,,
is the phase velocity of sound in water and Vg, is the velocity of leaky Rayleigh
waves on the solid. At this angle, waves incident from the water can couple
efficiently into leaky Rayleigh waves, which propagate along the specimen surface
shedding energy continuously back into the liquid at the angle fg,. The leakage
results in an attenuation, ag,, of the Rayleigh wave, additional to the attenuation,
ap, due to the intrinsic dissipation in the object material itself. With an implicit
harmonic time dependence exp (—iwt), in the absence of any exciting force on the
surface the variation of the leaky Rayleigh wavefields along the surface has the

form exp (ik,x), where .
ky = kgyt+i(ag,+ap) (2.1)

and kg, is the real part of the wavenumber for leaky Rayleigh waves. The two
ray contributions A and B add vectorially at the transducer so that the V(z)
response of the acoustic microscope depends upon the magnitude of the phasors
produced by each acoustic beam component and the relative phase between them.
As the specimen is defocused the relative phase between the two ray contributions
changes so that the amplitude of the resultant output signal on the transducer
oscillates with a periodicity in z that is determined by 0g,, which is in turn related
to the Rayleigh velocity.
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Imaging of surface discontinuities with s.a.m. 33

A discontinuity in the surface is shown in figures 1 and 2. The first of these figures
represents a crack placed within the spot on the surface illuminated by the incident
field. This corresponds to the situation we described as a ‘short-range’ disturbance
of the Rayleigh wave. Here, Rayleigh waves are excited from both points
labelled b ; these waves will hit the crack and be reflected with reflection coefficient
R and transmitted with a coefficient 7. The crack scattering coefficients may
depend upon the direction of the incident surface wave; we shall assume for cracks
that R and 7 are the same for both directions of incidence. This assumption is not
made, however, at interface boundaries. The theoretical determination of the
values of R and 7 is a formidable problem (Achenbach ef al. 1980), but we may
nevertheless assume that every discontinuity may be characterized by these
parameters. The values of 7' and R depend on the acoustic frequency because they
are related to the ratio between the depth of the crack and the Rayleigh wave-
length. Figure 2 represents the situation referred to earlier as ‘long-range’
disturbance; in this situation the surface wave is incident from one direction only
and the transmission coefficient 7' does not effect the final output of the transducer.
To observe ‘long-range’ disturbances we would expect the crack to have a large
reflection coefficient. In the short-range region of figure 1 we might expect that
a small value of T' and R, corresponding to an absorptive crack (such as one
scattering surface into bulk waves in the solid), would reduce the amplitude of the
incoming Rayleigh wave so that the ripple normally associated with the V(z) curve
would be greatly reduced. These intuitive expectations will be compared with the
more detailed wave model described in §5.
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F1GURE 2. Ray diagram showing ‘long-range’ contrast mechanism.

Further effects in addition to scattering at a boundary arise when the specimen
exhibits a discontinuous change in the Rayleigh wavenumber across the boundary.
This may correspond to the situation in a composite material where two dissimilar
materials are bonded together or a grain boundary where the different crystallo-
graphic orientations in each grain mean that the Rayleigh velocity differs across
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34 M. G. Somekh and others

the boundary. The change in the imaginary part of k, across the boundary means
that energy is re-radiated more rapidly on one side of the boundary than the other.
The change kg, the real part of k,, has more interesting consequences, however,
because the angle of excitation of the Rayleigh wave will differ from the angle of
re-radiation.

We shall now consider the effect of a velocity change across a boundary on the
periodicity of the V(z) ripple, by extending the simple analysis developed in
Parmon & Bertoni (1979). We consider the situation where the boundary is well
inside the illuminated area of the lens. We also assume that total transmission of
the Rayleigh wave takes place at the boundary between two media, an assumption
that would not normally be valid for a crack but which can be approximately true
for a grain boundary. Because the angle of excitation, ORra1, in medium 1 differs
from the corresponding angle in medium 2, g, (the distance between the lens axis
and point of excitation (and re-radiation)) is different in each material (see figure 1).

If a perfect reflector were placed at the focus of figure 1, rays A and B would
return to the transducer in phase, because all rays must be in phase at the focus
of an aberration-free lens. If we consider the specimen to be defocused towards
the lens by a distance z, then the relative phase between the two rays may be
computed as follows.

The advance in the phase of ray A is given by 2k, 2, where k,, is the wavenumber
of the sound in water. The advance in the phase of ray B is

1 1
kg2 (cos Ot + o 6Raz)_ Tegay (2 tan O, +@g) — kpao( tan Oga, — o)+, (2.2)

where , is the displacement of the boundary from the lens axis (see figure 4) and
i is a constant phase change associated with excitation and re-radiation of the
Rayleigh wave. Because kg, = k., sin Og,, the relative phase between Aand B, ¢,is

kw Z[(l —CO8 6Ral) + (1 —COoS BRaz)] + kw IUO(SiIl eRal —sin eRaz) - 1)[f (23)

The periodicity in V(z), Az, is given by the change in z necessary to produce a change
in ¢ of 2m:

Az 2m Ay

= by [2— (cOS Opqy + €08 0r,,)] To— (cos Ogy, + cOsOgq,)

(2.4)

When 0g,, = Oga,, the expression is equivalent to that given for a continuous
specimen by Parmon & Bertoni (1979), Atalar (1979) and Bertoni (1984). When
the boundary is present the periodicity of the V(z) ripple is intermediate between
the periodicities of each region; to be precise the reciprocal of the periodicity is
half the sum of the reciprocals of the periodicities corresponding to each region.
The foregoing expression applies only when the discontinuity lies between the
points of excitation and re-radiation of Rayleigh waves. When x, lies outside this
region the spacing between the minima, Az, depends entirely upon the surface wave
velocity of the material under the lens axis. The change in the location of the
maxima and minima of the V(2) curve as , varies means that large changes in
the output of the microscope can be expected at grain and interface boundaries.
This effect depends primarily upon the change in the relative acoustic pathlengths
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Imaging of surface discontinuities with s.a.m. 35

as the lens axis is moved relative to the discontinuity rather than on the scattering
properties of the discontinuity itself. It will be shown in §5.2 that this additional
mechanism for the contrast at an interface or grain boundary can be much more
important than the scattering by the discontinuity. This distinguishes the
two-media situation from the one-medium situation where the scattering at the
crack is the sole determinant of the contrast.

To estimate the reflection and transmission coefficients of a Rayleigh wave at
a boundary between two tightly bonded materials or a grain boundary, a
transmission line model may be used to give a good approximation to the reflection
and transmission coefficients, provided that the discontinuity is deep and smooth
so that there is little scattering from the surface waves into bulk waves. The
acoustic characteristic impedance of each medium is taken to be the density
multiplied by the leaky Rayleigh wave velocity. This model yields 7, = 1+ Ry,
where the letter m designates the medium and may be either 1 or 2. T}, and R,
are, respectively, the transmission and reflection coefficients from medium m (Li
et al. 1977).
_ Pa kpl_pl kpz

Palgytprkyy’

where p, and k,,, are the density and leaky wave numbers of the two media.
Because we are using a two-dimensional lens model throughout this work, we may
treat a grain boundary as an interface between two different materials with
Rayleigh wave velocities corresponding to the wave velocity in a direction perpen-
dicular to the line of the interface. For a grain boundary, p, = p,, so that

R,=—R, (2.5)

R, = kg1 —kpo - knm—kRaz_ (2.6)
kpytkps  Frait+Eras

Calculations of the leaky Rayleigh wave velocities along various planes and
directions in a fairly anisotropic material such as iron suggest that, for a typical
grain boundary, the velocity difference between grains will be ca. 10 % the
reflection coefficient will be ca. 0.05 and a transmission coefficient of ca. 0.95. The
small value of the reflection coefficient suggests that neglecting this parameter will
not materially effect the conclusions of the ray calculation above; this is confirmed
by the more detailed calculations presented in §5.2. The transmission line model
of a grain boundary will be used with the more general wave analysis developed
later in this paper. This simple ray approach will give an intuitive picture of the
effects of lateral discontinuities, but to give a full account of the contrast a more
quantitative assessment of the Rayleigh wave contribution must be made.

3. SEPARATION OF RAYLEIGH WAVE AND DERIVATION OF
THE GREEN FUNCTION

The simple ray approach discussed in §2 gives an intuitive picture of the effects
of lateral discontinuities; the model we develop in this section enables one to make
more precise predictions. In a model which recognizes the importance of the role
of Rayleigh waves upon the microscope contrast it is necessary (at least implicitly)

2-2
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36 M. G. Somekh and others

to establish the coupling between the incident radiation from the liquid and hence
the strength of the excited Rayleigh wave propagating along the solid-liquid
interface.

3.1. The field reflected at a uniform interface: calculation of
the Rayleigh contribution

In the absence of dissipation, ap, of (2.1) vanishes and k, at the zero of the plane
wave reflection coefficient, R, is the complex conjugate of the pole at k,. When
k, is in the vicinity of kg, the variation of R (k,) is dominated by the pole &, and
zero k,, and therefore is approximately given by the expression (k, —k,) [(ky—1y).
Similarly, when £, is near —kg,, the pole —k, and zero —k, dominate, so that
R(k,) is approximated by the expression (k,+k,)/(k,+ k,). These two terms
account for the phase change of —2rn that occurs in R(k,) as 6 increases past Og,
(Atalar 1979). The foregoing two expressions may be factored out of R(k,). Let
R,(k,) be the ratio of R(k,) to the two expressions, so that

— (ky—ky byt ko _ k%—k%)
Rp(kx) = R,(k,) (_kx_kp k$+kp = Ry(k,) 1+ki——k12) . (3.1)

The second term in the bracket accounts for the variation of Ry (k,) for k, in the
neighbourhood of +kg,, because there the function of R,(k;) ~ 1. Away from
+ kgq, k2 — K2 is large compared to k} — kg, so that By(k,) ~ R,(k,). In view of this
behaviour of the terms in (3.1), R, (k,) may be approximated as

Ry(k,) = Ro(ky)+ (k —k§)/ (k% — kg)- (3.2)

The approximation (3.2) separates R,(k,) into two parts. The first part, RBy(k,),
describes all of the reflection properties of the surface except for those involving
the Rayleigh wave, while the second describes the excitation and re-radiation of
the leaky Rayleigh wave.

Let p;(x, 2,) be the pressure field incident on the surface located in the plane
2 = 2,, as shown in figure 1, and let B(k,, 2,) be its Fourier transform. Consistent
with the foregoing separation of the reflection coefficient, we may separate the
pressure p,(, z,) of the fields reflected into two parts:

Pe(,20) = P, %) + Pr(T, %) (3.3)

Here pg(, z,) is associated with Ry (k) and py(x, z,) results from the Rayleigh wave.
At a uniform surface, the Fourier transform of p,(2,7,) is equal to the product of
P(k,, z,) and R(k,). By using the separation (3.2) of R(k,), we therefore have

1 (® ;
Pi(,2) = o J By(k,) Fi(ky, 2,) exp (ik, ) dk, (3.4)
)
a @) = | s Bl 20) xp i, ) d (3.5)
an P, 2,) = — 2L P(k,, 2, exp (ik 2 . .
L 0 o o ki—k% i\ ©0 p z x

An alternative form for py (x, z,) is derived by Bertoni (1984) by substituting for
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Imaging of surface discontinuities with s.a.m. 37

P(k,,z,) its representation in terms of the Fourier transform of p;(k,, 2,) and
changing the order of integration. This manipulation leads to

10 © kp—ky ) y
P, %) = on P32, %) 72 2 OXP [ik,(x—a’)] dk, da’.  (3.6)
oo g D

—00 -

The integration over k, may be done by deforming the path of integration into
the complex &, plane. For x —a’ > 0, the path is deformed into the upper half-plane,
capturing the pole at k,. When x—2’ < 0, deforming into the lower half-plane
captures the pole at —k,. By using the approximation

i3 — k2)/ (2%,) ~ — 20, (3.7)

valid when ag, < kg,, the residues at the poles give

PL(®, %) = —Q“Ra{f

xZ

i@, 7o) exp [iky(x—2’)] da’
o 0]

+pri(w', 2,) exp [—ik,(x—2a’)] dx’} . (3.8)

Equation (3.8) is the Green integral for the leaky Rayleigh wave component of
the reflected field. The first term in (3.8) represents the Rayleigh wave propagating
in the positive  direction, which is excited by the incident field at points to the
left of the observation point. Similarly, the second term represents the leaky
Rayleigh wave propagating in the negative & direction and excited by the field
incident to the right of the observation point.

3.2. Fields reflected at a surface with a discontinuity

In this section we generalize the results for a smooth surface to account in an
approximate way for the presence of the discontinuity in figures 1 and 2. The
primary effect of the discontinuity is to interfere with the lateral transfer of energy
along the object surface. When present, the Rayleigh wave is the dominant
mechanism by which lateral transfer of energy can take place. Anisotropic
substrates may support other types of surface wave, such as pseudo-surface waves
(Somekh et al. 1984), which transfer energy laterally; the present approach can
probably be extended to these. The component pg(%, z,) of the reflected field does
include the weaker mechanism of lateral energy transfer by means of lateral waves,
which are associated with the branch points of the reflection coefficient (Bertoni
& Tamir 1973). The branch points are located at +w/¥; and + /¥ in the complex
k, plane, where ¥; and V; are longitudinal and shear velocities of the object.
Neglecting scattering of the lateral waves by the discontinuity, and diffraction at
the edge (2, 2,), the field component p(, 2,) over each region of the object surface
in figures 1 and 2 will be nearly the same as one would obtain for a uniform surface
of identical properties. Thus if the medium is denoted by the subscript m = 1,2,

then 1 0
pG(x: Zy) R % f Rom(kx) Pz(k:w ZO) exp (lkx x) dkx (3.9)
—o

In (3.9), the function Ry, (k,) of medium 1 is used for < x,, while R, (k,) is used
for @ > x,. At grain and interface boundaries, Ry, (k,) and Ro,(k,) will be nearly
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38 M. G. Somekh and others

equal, so that an incident plane wave will reflect into a single plane wave with
reflection coefficient E,(k,).

The leaky Rayleigh wave excited to the left of the discontinuity and propagating
towards it will be partly reflected with coefficient R, and partly transmitted with
coefficient 7]. Provided that water loading is a small perturbation, these coefficients
will be nearly the same as would be found for free surface Rayleigh waves in the
absence of the couplant. Similarly, the leaky Rayleigh wave propagating towards
the discontinuity from the right will be reflected and transmitted with coefficients
R, and 7T,. Some energy will be scattered directly into the water from the
discontinuity. This energy is expected to be small compared with the reflected and
transmitted energy, which is ultimately re-radiated into the water and is not
considered. We also assume that the excitation and re-radiation factors of the
Rayleigh waves are not affected by the proximity to the crack;i.e. we assume that
the Green function is affected only by the reflection and absorption at the
discontinuity.

In medium 1, the Rayleigh wave propagating in the positive x direction is
excited by fields incident to the left of the observation point. The re-radiated
pressure of this wave is given by the first term in (3.8), where the parameters ag,,
and k,, of medium 1 are used. The Rayleigh wave propagating in the negative
direction will be composed of three parts. One part is due to excitation in medium 1
between the observation point and the discontinuity. Its radiated field is given
by the second term in (3.8), with the upper limit replaced by . The second part
of the field propagating in the negative x direction is produced by the Rayleigh
wave incident on the discontinuity from the left and reflected by it. Because the
incident wave is excited at all points < z,, the radiated pressure of this wave
is given by 2
exp [—iky, (v —ao) By] {— 2050 f - P3(@', ) exp [iky, (v, —2")] da’}.

The third part of the wave propagating to the left in medium 1 is a result of
the transmission of the wave incident on the discontinuity from medium 2, which
is excited at all points # > «,. Reciprocity requirements (Saad et al. 1974) require
that the factor oy, must be replaced by 4/ (ctga; ®Ras)- The factor 1/ (agrga,) arises
from the excitation of the leaky wave on medium 2, while 4/ (ag,,) describes the
launching of the field in the water by the Rayleigh wave in medium 1. Thus the
field of this last part is

exp[— ikpl(m — )] Tz{ —2+/(%Ra1 %Ra2) J'x (@, 2,) exp [— i]"pz(“’;o —a’)] dw,} .

The total radiated field for « < z, is therefore given by (3.10)

x

P1(®, 2,) = —2ag,, [[f (2, 2y) exp [ilcpl(a:—x’)] da’

xo ) 3 /7 /’
+J pi(a’, zy) exp [iky, (x —a)] de
x
&

+exp [—iky,(x—,)] {Rl J pi(a’, z,) exp [ikpl(wo—x’)] dz’

+A/(@i2) T, foo pi(a’, 2,) exp [_kpz(xo_m/)] dx/}ﬂ : (3.11)

aRal oy
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Imaging of surface discontinuities with s.a.m. 39

Similar arguments can be used to construct the field radiated in the region & > .
Thus, to the right of the discontinuity,

©
P, 7) = — 20ty [[ f Pl 7) exp [—ikpy(w—2/)] do’
Zo
x

+J. p;(a’, 2y) exp [ikp(x— z')]da’

Zo

+exp [ikp2(x — )] {Rz f (%, 2,) exp[— il"pz(‘vo" a’)]da’

Zo

+A/<%_i) Z J‘% 5(2’, 2,) €XP [ikél(xo—x')] dm’}]}. (3.12)
ORa, —o

Expression (3.8) together with (3.11) and (3.12) gives the complete reflected field
at the object surface for any location z, of the surface, and any value of z,.

3.3. The Green function in the spatial frequency domain

Equations (3.8), (3.11) and (3.12) can be viewed as relating p,(z, 2,) to py(7, 24)
via a Green function G(x, ) in the spatial domain. Alternatively, we can transform
G(z,2’) to obtain a Green function S(k,, k) in the spatial frequency domain that
relates the Fourier transform Pi(k,, 2,) of p.(%, z,) to Bi(k, %)

If we consider a unit incident wave of zero reference phase given by exp (ik; ")
the spatial distribution upon reflection will be [ °_°m G(x,2') exp (ik, «') da’. The
angular spectrum corresponding to this spatial distribution will be given by the
Fourier transform of this expression so that '

1 [eo] o0 )
S(k,, k) = ﬁf f Q(z,2') exp (ik, 2') exp (—ik,x)dxda’.  (3.13)

This analysis gives a clear physical argument for the double Fourier transform
relation that relates the Green function in one domain to the Green function in
the other domain (Saad et al. 1974). It is the Green function S(k,, k;,) that is most
convenient for computing V(z) by using the Fourier optical techniques described
in §4. This Green function allows the incident angular spectrum to be related to
the reflected angular spectrum thus:

o]
Bllya) = | S0ty ) Bl ) 8 3.14)

—00
Provided the correct allowance is made for the discontinuous change in the elastic
constants across the boundary by convolution with the appropriate step function,

lengthy but straightforward analysis for S(k,, k) leads to the expression
S(k,, k) = Ry 8(k,— k) '

T T
+§E {2\/(061 0‘2) [(kz + kpl) (k:/v = kpz) = (kx - kpz) (k,x - kpl)]

%0, [ 1 R, ] %, [ 1 R, ]
- 7 -+ 7 - 7 +=
Toy+lopy LEegt+kyy  Fp— byl ky—lpy [ky—kpe  kyt+ ky,

5 ’_ % kpl %o ]sz ]
+dimdly — k) [(km— (il 57— (lpo)®
4 oy kyy % keys ]} 3.15
+k;‘_kx [(7025)2—(701)1)2 ()2 — (kpg)®1) &-19)
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In (3.15) the first term represents the geometrical reflection whereas all the
subsequent terms describe the behaviour of the excited Rayleigh waves. Equation
(3.15) represents the most general case accounting for arbitrary values of the
reflection and transmission coefficients and also allowing for different media either
side of the boundary. If T, = T, = 1 and R, = R, = 0 and k,, = k,, this expression
reduces to the form of (3.2), the reflectance function from a single material in the
absence of a discontinuity. A crack in a single material is represented by ky, = kp,.

A consequence of the model used is that the effects of the crack on the term
representing the geometrical reflection are completely neglected, so that in some
cases the total spectral power reflected can be greater than unity. The errors arising
from this approximation in practice are believed to have only a small effect on the
contrast in the microscope, but they remain to be evaluated. Although the method
of analysis does not depend on a perturbation approach, (3.15) has the form of a
perturbation solution in that the solution for a material with a crack is expressed
as the specular reflection from a perfect specimen with additional non-specular
terms caused by the presence of the crack. It would be reasonable to expect
therefore that (3.15) is most accurate for comparatively weakly scattering
discontinuities.

4. CALCULATION OF V(2)

In this section we shall derive expressions for V(z) for a cylindrical lens that are
very similar in form to those given by Sheppard & Wilson (1981). First, V(z) for
a perfect defect-free substrate will be derived so that the stages necessary in the
analysis are clear. An expression for V(z) in the presence of defects will then be
derived; in this expression the scattering function S(k,, k) will fulfil the same
role as the reflectance function in a perfect substrate.

4.1. V(z) for a ‘defect-free’ substrate

Let the lens produce an angular spectrum L, (k) at the focus. The actual form
of this angular spectrum will depend on the geometry and construction of the lens
and transducer but may be regarded as a measurable parameter of the system.
On propagation to the specimen the angular spectrum will be modified to
L, (k,) exp (ik, x) where k, = 4/ (k*—k%). Reflection from a perfect surface involves
no change in the  component of the wavenumber so that on reflection this will
still be k.

This spectrum then propagates back to the focus so that the returning angular
spectrum at focus is Ry (k,) L, (k,) exp (2ik,2). We now define a further empirical
lens parameter L(k,), which gives the voltage response of the transducer to a plane
wave of unit amplitude at the focus. Ly(k,) is thus the sensitivity function of the
lens. We may now write:

V(z) = f Y Lik,) R (k,) exp (2ik,2) ks, (4.1)

where L(k,) is the product of the functions L, and L, and the integration limits
are unbounded because the aperture of the lens is bounded.
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4.2. V(z) for a specimen with a lateral discontinuity

When the specimen contains lateral discontinuities, a plane wave incident at one
incident angle k&, will be scattered into a spectrum of plane waves given by the
scattering function S(k,, k). Because the incident waves with a k;, component of
wavenumber are scattered into plane waves propagating with different &, we must
be careful to distinguish between the x component of the wavevectors of incident
and scattered waves. With a specimen without discontinuities this distinction is
unnecessary because they are the same. As for a perfect reflector the angular
spectrum at the focus will be L, (k;), so that the spectrum incident upon the surface
is L, (k) exp (ik, z). We now move our coordinate system so that the plane x =0
corresponds to the line of the discontinuity (z = %) rather than the axis of the lens
as implicitly assumed previously. This is done so that the scattering matrix is
calculated once only for an incident wave of unit amplitude and zero phase; the
effect of moving the crack is incorporated in the phase change introduced when
the coordinate system is changed. The incident angular spectrum in the modified
coordinate system is L, (k) exp [i(k, z+ &, %,)]. Because the reflected spectrum is
now expressed in a coordinate system in which the crack position is the origin, the
reflected angular spectrum may be obtained by direct application of the scattering
function; the spectrum is thus S(k,, k) Ly (k) exp [i(k,z+k,x,)]. To account for
the back-propagating spectrum, each component of the returning spectrum is once
again referred to the original coordinate system and allowed to propagate back
to the focus, so that the amplitude and phase of each wave is

exp [i(k, 2— Iy %)) Sy, k) Ly (k) exp [1(K; 2+ 2o)]-

The returning angular spectrum at the focus may therefore be evaluated from
the integral

J exp [i(k, z— ko, 2y)] Sl ki) Ly (k) exp [i(k; 2+ &, )] Ak

The V(z) output response of the system is thus

Vie) = r’ f‘” oxp [i(k, 2+ K, 2)] Ly (k) Lo(e,) S(k k)
x exp [i(k;, 2o — by 2o)] Ak, dk,, (4.2)

where k, and &, must be expressed in terms of k, and k;, respectively. If S(k,, k)
is replaced by R(k,)d(k,—k,), then (4.2) reduces to the form of (4.1).

5. CALCULATED RESULTS
5.1. Results from a crack in a single medium

The scattering function for a crack was calculated from (3.15) for various values
of T and R and substituted into (4.2) so that the V(z) response of the cylindrical
lens could be calculated for a crack with various reflection and transmission
properties. Figure 3 shows the V(z) response calculated for aluminium by setting
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normalized output response, V
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T1GURE 3. V(z) obtained for a ‘perfect’ specimen with unity crack transmission coefficient and zero
reflection coefficient. The elastic constants correspond to those of aluminium, longitudi-
nal velocity = 6331 m 572, shear velocity = 3109 m 5%, Rayleigh velocity = 2903 m 87,
density = 2695 kg m™3; wave velocity in water at 60 °C = 1551 m s71 with density = 10°
kg m™3.

T =1 and R = 0; that is, in the absence of any discontinuity. Figure 4 shows
the calculated V(z) when T'= 0.5 and R = 0 (this corresponds to an absorptive
discontinuity) for different displacements between the crack and the axis of the
acoustic lens. This series of V(2) curves shows the effect of moving the lens axis
away from the crack position. A calculation for the situation where the crack is
displaced from the lens axis by ca. 102,, (where A,, is the acoustic wavelength in
water) shows that the V(z) response is very similar to that of the material in the
absence of the discontinuity. Linear discontinuities of low reflectance are therefore
responsible for the ‘short-range’ contrast referred to earlier. The solid curve in
figure 5 shows a V() plot taken at a defocus of —2A,,. A V(x) curve is a plot of
output voltage against the displacement of the lens position relative to the crack,
and corresponds to the output of the line scan of the acoustic microscope. This
figure shows that the contrast due to this discontinuity is very small at a distance
more than 3A, away from the crack, thereby confirming our description of
short-range contrast. As the defocus is increased, the apparent width of the crack
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FiGURE 4. V(z) curves obtained from aluminium with an absorptive, non-reflecting crack with
T =05 and R = 0. Solid curve represents axial crack. Broken curve represents crack
displaced by 47, from the lens axis.

(defined as the distance between the points at which the contrast falls to half its
maximum value) corresponds more closely to the value 2z tan fg,, which is the
distance between excitation and re-radiation of Rayleigh waves as predicted by
ray theory. For values of defocus greater than about 57, this value gives a
reasonable, although not excellent, estimate of the apparent crack width. Measure-
ments taken from a similar V(z) curve taken at focus indicate first that the
contrast between the crack and the rest of the surface is small, and secondly that
the width of the crack appears to be ca. 1.5,,, by using the above criterion. The
profile of the image of the crack is such that the apparent width is strongly
dependent upon the exact criterion one uses. Nevertheless, at focus the apparent
width of a non-reflective discontinuity appears to be determined by the diffraction-
limited spot size in water. This confirms the comments of Quate (1980) on the
apparent width of grain boundaries. For a two-dimensional lens the distance
between excitation and re-radiation of Rayleigh waves, rather than the spot size,
seems to determine the apparent width of the discontinuities. At focus this value
is indistinguishable from the spot size, because at focus Rayleigh waves may be
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F16URE 5. V(z) curves obtained at a specimen defocus of —2A,,. Solid curve represents specimen
with the same parameters as in figure 4. Broken curve represents aluminium with reflective
discontinuity (7' = 0, B = 0.5). Dotted curve represents hybrid discontinuity using the same
data as shown in figure 8a.

regarded as excited throughout the extent of the focused beam because a particular
spatial position will not correspond to a particular incident angle. When the beam
is defocused, diffraction effects will be less important and the distance between
excitation and re-radiation will be adequately predicted by ray theory. The
situation for a two-dimensional lens when defocused will be rather different from
that of a spherical imaging lens because in the spherical case the annulus of the
excited surface waves will be self-focusing. This was discussed qualitatively by
Smith et al. (1983), where the authors concluded that this self-focusing effect would
mean that the apparent width would only slowly increase with defocus.

We will now look at the calculated microscope response when the properties of
the crack are reversed, i.e. when 7' = 0 and R = 0.5. Figure 6 shows a series of values
of V(z) calculated from these crack parameters. When the crack is on the lens axis,
V(2) is exactly the same as that shown in figure 4 (solid curve) for an absorptive
crack. This is because the ray paths in each are equivalent, so that the ray reflected
from the crack follows precisely the same path and has the same magnitude as the
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FIGURE 6. V(z) curves obtained from aluminium with reflective discontinuity (7' = 0, E = 0.5).

Solid curve represents crack displaced by 4A,, from lens axis. Broken curve represents crack
displaced by 102, from lens axis.

ray transmitted through the crack which gave rise to the solid curve in figure 4.
As the crack is moved from the central position, the V(z) curves of figure 6 become
very different from those of figure 4. The most interesting feature is that V(z) is
severely perturbed in the positive z region, that is, when the specimen is placed
below the focal plane. The diagram of figure 7 illustrates why this may occur. The
principal surface waves excited on the specimen surface when the specimen is below
the focal plane travel away from the lens axis and thus do not contribute
significantly to the V(z) response of the acoustic lens. If, however, these rays are
reflected from the discontinuity they may return to the lens along their original
path, thus significantly affecting the microscope response. This prediction provides
a simple experimental test of whether a linear discontinuity is reflective. The
broken curve of figure 5 shows a V(z) curve calculated for a defocus of 2A,. One
can see immediately that here the contrast extends a very considerable distance.
There is ripple with a periodic variation of half the Rayleigh wavelength which is
responsible for the long-range contrast, and this may be thought of as superimposed
upon a varying baseline which represents short-range contrast localized within a
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Ficure 7. Ray diagram explaining why the V(z) curve is perturbed in the positive z region
in the presence of a reflective discontinuity.

few wavelengths of the crack. The reflective discontinuity thus exhibits both long-
and short-range contrast mechanisms. As one moves away from the crack the
localized variation in the contrast dies out and one is left with just the periodic
ripple of the type observed by Yamanaka & Enomoto (1982), whose amplitude
decays exponentially according to exp (—2ag, %,). The V() curves bring out the
distinction between reflective cracks, which affect the contrast in the acoustic
images over a distance of ten or more Rayleigh wavelengths, and absorptive
discontinuities whose effects on the contrast are much more localized. The strength
of the model presented here is twofold: first, it is able to explain the contrast due
to a discontinuity at any point quantitatively, and secondly, the same model is
applicable both near and far from the discontinuity.

Angel & Achenbach (1984) have recently calculated the amplitude and phase
of the reflection and transmission coefficients of Rayleigh waves incident upon a
crack at an arbitrary angle of incidence. The values of the reflection and
transmission coefficients were calculated for a range of crack depths. If we assume
that these scattering coefficients are little affected by the liquid loading then the
values for normal incidence may be substituted into (4.2) to compute either V(z)
or V(z) curves. Cox & Addison (1984) have similarly computed V(z) in their model
of a spherical lens with a crack on the axis by using these coefficients. Figure 8
shows three V() curves computed for three different values of the normalized crack
depth, d/Ag,, of 0.1, 0.5 and 1.0 (where Ag, is the Rayleigh wavelength). It can
be seen that the very shallow crack produces comparatively little contrast, because
this crack neither reflects nor absorbs a significant proportion of the incident
surface waves. On the other hand, the deeper cracks produce considerably more
contrast, showing both long-range and short-range effects. The long-range Rayleigh
ripple is more pronounced in the crack of intermediate depth because of the larger
Rayleigh wave reflection coefficient; the short-range contrast is greatest in the
deepest crack, which has the smallest transmission coefficient. To illustrate how
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F1gUrE 8. V(x) curves calculated for the reflection and transmission coefficients obtained by
Angel & Achenbach (1984). Because their results used the Poisson ratio 0.3 the relevant
elastic properties were longitudinal velocity = 6000 m s72, shear velocity = 3207 m s™ and
density 2695 kg m~3. The corresponding Rayleigh wave velocity is 2974 m s™1. Solid curve
represents crack depth of 0.1Ag,. Broken curve represents crack depth of 0.5Ag,. Dotted
curve represents crack depth of Ag,.

a typical discontinuity shows features characteristic of both types of idealized
discontinuity, the dotted curve of figure 5 shows the same data as the solid curve
of figure 8 but plotted on the same axes as the reflective and absorptive
discontinuities. ‘

In principle, therefore, it should be possible to use a cylindrical line focus lens
to estimate the depth of cracks and an ability to sweep the acoustic frequency
would greatly facilitate this.

5.2. Results from a boundary between two different materials

Equation (3.15) gives the scattering function for the general case when k,; # kp,;
this enables us to calculate the V(z) and V(x) curves over a boundary between two
media. The formulation enables one to calculate the scattering function for
arbitrary values of reflection and transmission coefficients; however, the values
used in our calculations correspond to those predicted by the transmission line
equation (2.6). V(z) curves for a boundary between two media whose acoustic
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velocities differ are much more complicated than the single-media V(z) curves.
When the discontinuity is in the axis of the beam the periodicity observed is
approximately intermediate between the periodicities of the individual media, as
predicted by the simple ray theory of §2. When the position of the discontinuity
is moved the curves become even more complicated, showing variations in
periodicity as expected from the ray theory. The transitions in periodicity are,
however, by no means as clear-cut as the ray theory predicts because diffraction
effects are obviously important.

A series of V(x) curves were calculated for a boundary between two media whose
acoustic velocities differ by about 15 % (figure 9; the actual values are given in the
caption). The V(x) curves for different defocuses demonstrate many of the
experimental findings in acoustic images. It should, however, be borne in mind that
the two-dimensional lens modelled here may give greater amounts of contrast than
are actually found with a spherical lens. Our model predicts that there is only a
very small amount of long-range contrast in the form of periodic ripple in the V(x)
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Teure 9. V() calculated over two media with different elastic constants. Medium 1 is as
aluminium above; medium 2 has the same density as medium 1 but the acoustic velocities
are 5400 m s™! (longitudinal) and 2700 m s™* (shear). (¢) Solid curve represents specimen
at focus. (b) Long dashes represent a specimen defocus of —4A,,. (c) Short dashes represent
a specimen defocus of —62,,. (€) Dotted curve represents a specimen defocus of —104,,.
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[
50 pm
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4
Freure 10. Acoustic micrographs of EN8 stainless steel showing grain boundary contrast

(acoustic frequency 730 MHz). (a) Specimen defocus —4 pm (= 2A,,). (b) Specimen defocus
—7 pm (% 3.51,).

(Facing p. 48)
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curves. This is due to the small value of the Rayleigh wave reflection coefficient
(ca. 0.07) expected from the transmission line model. In practice, one would expect
there to be even less long-range contrast in a spherical imaging system, because
the returning surface waves would only excite a very small proportion of the
transducer. We are therefore able to understand the experimental observations
that long-range Rayleigh wave ripple is rarely observed close to grain boundaries.
The most obvious difference between the V(z) curves at an interface boundary
and a crack is the lack of reflection symmetry about the interface position. As one
moves away from the interface the output settles down to a level characteristic
of the medium at that particular defocus. The curve, shown in figure 9a for a speci-
men at focus, shows a small amount of contrast between the two media and apart
from the periodic ripple the transition across the interface is approximately
monotonic, which suggests that the boundary would not show significant contrast
on its own account. As the defocus is increased the transition between the two
media initially remains approximately monotonic but the actual contrast between
the two regions becomes greater. When the defocus is increased to 44, (figure 9b),
the relative contrast between the two regions is further increased and there is
contrast reversal. The intensity at the position of the interface is more like the
brightness level in medium 1 than medium 2; in an acoustic micrograph the grain
boundary would thus appear to be displaced to the right. Figure 9¢ shows another
feature often observed in acoustic micrographs. Here there islittle contrast between
the media but the boundary itself appears considerably darker than both regions.
At a defocus of 101, the contrast of the interface is reversed, so that the boundary
appears very brlght in comparison with the body of the two media (see figure 9d).
The qualitative agreement with observation is striking because the most common
sequence of images obtained in the s.a.m. correspond to that described above. That
is to say, as one defocuses, acoustic images of grains appear before the boundary
shows separate contrast. When the specimen is further defocused the boundary
itself will stand out against the grains, almost invariably appearing dark. As the
specimen is defocused still further the boundary will show up bright against the
background of the grains. The acoustic images taken with a spherical lens bear
this out. Figure 10a, plate 1, was taken at a defocus of —4 pm (ca. 24,,) and
shows dark grain boundaries. Figure 10b shows the grain boundaries appearing
bright against the background; this image was taken at a defocus of —7 pm
(ca. 3.51,). Although the values of defocus at which these light and dark
boundaries appear are different in our two-dimensional model compared with the
actual micrographs taken with a point-focus lens, the boundaries almost invariably
show up dark at a smaller defocus than that at which they appear bright. It is
also interesting that in the micrographs the contrast at the boundaries depends
upon the defocus rather than the orientation of the individual grains making up
the boundary, because the boundaries all appear light or dark within the same
picture. It seems then that the transition from light to dark boundaries is a general
feature of the amount of defocus rather than the specific grain discontinuities.
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6. DISCUSSION

Experimentally, the observation of contrast from linear discontinuities, includ-
ing cracks, is very important as it is an area of application where the s.a.m. has
very powerful imaging ability because the excited Rayleigh waves are scattered
when they hit the crack broadside. In this paper we have presented a quantitative
model which accounts for these phenomena for a cylindrical lens. The two-
dimensional model explains many of the observed phenomena such as the different
types of image which are observed in the acoustic microscope. The model also
predicts that reflective discontinuities will give contrast in the region of positive
defocus.

Probably one of the most important conclusions is the difference between the
contrast mechanisms at linear discontinuities in a single medium and at interfaces
between two media. Even though these two situations can be represented by the
same general model, there is a significant difference in the physical interpretation
of the contrast. In a crack in a single medium the output response of the microscope
depends upon the scattering properties of the discontinuity, and a V(x) trace must
for obvious reasons be symmetrical about the position of the crack. On the other
hand, there is no such symmetry at an interface boundary and so the image of the
interface may appear slightly displaced from its true position. An even more
important distinction between the two types of imaging is that a great deal of
boundary contrast in the norraal two-media situation (such as our two-dimensional
approximation to a grain boundary) is not a result of the scattering properties of
the interface but of the change in the wavenumber of the leaky Rayleigh wave.
Although the transmission line model suggests that these two sets of properties
are intimately linked, (3.15) allows the scattering properties of the interface to be
separated from the elastic properties of the media, so that it is possible to calculate
the V(z) or V(z) from a boundary with unity transmission coefficient and zero
reflection coefficient. The V(x) traces that one obtains are very similar to the V(x)
curves of figure 9 where the transmission line model for the scattering properties
of the crack was used, the only significant difference being the absence of long-range
ripple in the latter curves.

The practical consequences of this model are that the boundary conditions
around lateral discontinuities, in a single medium, may be estimated from the
observed contrast. It is expected to be much more difficult to use the s.a.m. for
quantitative study of the boundary conditions at the boundary between two
dissimilar materials, where the change in wavenumber across the interface is a
strong additional contrast mechanism.

The model may fairly readily be extended to account for a single substrate with
two discontinuities of variable separation, so that the lateral resolution of a
two-dimensional lens which excites surface waves may be estimated. The theory
presented here, although two-dimensional, should, in conjunction with experi-
mental methods for measurement currently being developed, enable the scanning
acoustic microscope to be exploited as a powerful instrument for quantitative
study of surface features.
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