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Abstract, We develop a general formulation of the problem of elastic transport between two
semi-infinite systems, connected by a system of finite size, and derive expressions for the
current in and the differential conductance of such a circuit in the limit of zero interactions
between the carriers. These expressions are exact in the applied voltage, the coupling of the
components of the circuit, and the temperatore of the circuit. We then apply our results in a
tight-binding approximation to three specific cases: the one-atom contact, the finite, disordered
one-dimensional chain, and the generalized stacking fault.

1. Introduction

In this paper we treat the general problem of elastic quantum transport across a system
of finite size placed between two semi-infinite systems. The problem of direct transport
between two semi-infinite systems is a subcase of this general problem. The formal essence
of the method, developed below, is simple. ' We start with an initial Hamiltonian, Hy. We
divide its complete orthonormal set of eigenstates into two or more mutually orthogonal
subsets, each of which bears a clear spatial relation to a particular component of the system
described by Hp. Now we add to Hy a term V that couples these subsets. Finally,
we consider the current between the mutually orthogonal subsets of the complete set of
eigenstates of Hy due to some particular filling of the eigenstates of the final Hamiltonian,
H=H+V. :

The derivations in sections 2 and 3 are performed from the point of view of an
orthonormal tight-binding model. At the end of section 3, however, there is a complete
description of the implementation of the method in the continuum |r} representation, where
I} is the Dirac ket representing position.

2. The zero-current theorem

The whole of our analysis wil} rely on one fundamental result, which we prove in this
section. .
Consider two semi-infinite systems, 1 and 2. The coupling between them is zero
(figure 1). In the orthonormal tight-binding picture, employed here, this means that all
hopping integrals between the two systems have been set equal to zero.

Let this situation be described by 2 Hamiltonian Hy. Let system [ have a continuous set
of single-particle eigenstates {|¢, )} with eigenvalues {E;} and system 2 have a continuous
set of single-particle eigenstates {{¢)} with eigenvalues {E;}. The set of vectors {]¢n}},
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1 A
) C Figure 1. Two uncoupled semi-infinite systems, 1
and 2.

where n runs over all possible values of indices ! and 2, is the set of eigenvectors of Hp;
flén)} is a complete orthonormal set, The sets {|¢1}} and {|¢h}} are two mutually orthogonal
subsets of the complete set of eigenstates of Hp, such as those discussed in the introduction.
Let G%* be the Green operatars for the initial, decoupled system

GY¥(E) = Jim (E ~ Ho % i), (1)

The density-of-states operator, p°, for the initial system is given by

P%E) =[G (E) — G¥(E)1/(2i). )
From equations (1) and (2} we obtain
PHEY fn) = 8(E — Eu)ldn). (3)

Now we couple systems 1 and 2 by an additive term V in the Hamiltonian. Thus, the
new Hamiltonian H is given by

H=H+V. 4

V represents the switching on of the hopping between systems 1 and 2 but may have
other non-zero matrix elements too, We assume that V causes no level shifts, i.e. that the
eigenstates of H (which we assume to be single-particle states) also form a continuum in
such a way that to every eigenstate of Hy there corresponds exactly one eigenstate of H with
the same energy. At this stage of the argument, we encounter a subtlety, which we must
discuss in order to avoid confusion. So far we have ignored particle interactions inasmuch
as we have chosen to work with single-particle states as opposed to antisymmetrized many-
particle states. However, we may not neglect self-consistency altogether, even at this level
of simplicity, owing to the absclutely uncompromisable requirement that, both before and
after the coupling V' has been introduced, systems 1 and 2 have to be electrically neutral.
This requirement means that we cannot divorce the act of coupling 1 and 2 from the act
of filling the new eigenstates with electrons. In particular, with every mode of filling of
these eigenstates will be associated a rigid energy shift of the whole of 2 relative to 1, to
satisfy the neutrality condition. (For example, the contact potential is the rigid energy shift
associated with the equilibrium filling of the eigenstates for two coupled dissimilar metals,
and the battery voltage, to be discussed later, is the rigid energy shift associated with a
particular non-equilibriym filling of the eigenstates for the coupled system.) Now, what we
actually do is decide what mode of filling of the eigenstates for the coupled system we are
going to adopt, determine the associated rigid shift of the potential of 2 relative to that of
1, and include that shift in Hy. Thus we know that, so long as we do adopt the mode of
filling of the eigenstates for the coupled system for which that energy shiit was chosen, the
assumption. of ‘no level shifts’, mentioned earlier, will hold.

We have assumed that Hy and A have no bound states, but all results will hold when Hy
or H, or both, do have bourd states, so long as these bound states lie outside the respective
continua,
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The eigenstates of H, {|¥}}}, satisfy the Lippmann-Schwinger equation
W) = |8n) + GO (ED VI, )

where E, is the energy of |¢,) and [yF). {|¥F)} is a complete orthonormal set. The Green
operators G* for the coupled system are given by

G*(E) = Jim (B — H & i)™ (6)
The density-of-states operator, g, for the coupled system is given by

p(E) = [G~(E) — G*(E)/(2i). o))
Therefore

P(E)Y;") = 8(E — E)lY). 8)

Now we derive an expression for the operator representing the current in the system.
This is the operator for the current into system 2, ie. for the current into the set of states
{l¢2}}. The operator for the current into any state {u), I, is given by

I, = (e/in)(|u){u|H — H|u){u]). ®

This resuelt follows from the Schriédinger equation of motion for the operator Je) {u/.
Hence, the operator for the current into system 2, I, is given by

= = 3 (2} ol H — Higa) (a). (10)
2

But since [} (2] Ho = I¢2) Exidal = Holdn){dal, equation (10) becomes
= —Z(I%)(%IV Vig2)(al). (11)

The fundamental result, or ‘the zero-current theorem’, which we have set out to prove,
is the following: the sum of the expectation values of I in all states |§}), whose energies
E, lie in an energy interval dE about an energy E, is zero for any E. The physical meaning
of this statement is that, if all states |y} with E, in [E, E + dE] are equally filled, then
the current from 1 into 2 will be cancelled exactly by the current from 2 into 1. Here is
the proof:

The sum of the expectation values of I in all states h,(r"‘) with E, in [E, E + dE],
dI(E), is given by

dI{E} =dE Tx{I p(E)]. (12)
Taking the trace in the orthonormal basis {|;")}, we obtain
dE 1
dI(E) ek (¥ | @)@ VIWT) — (W F | Vidod g | ¥1)) 3(E — E). (13)
n2

But, by definition, {¢2|V[¥,7} = (¢2|T|¢n) = Ton, where T is the T-operator, and from
equations (5) and (1), {(¢2 | Y7} = 82n + G (En)22Tos. (Throughout the present section,
M, will be understood to mean (¢, | M|, ), for any operator M.) Therefore, equahon (13)
becomes

E
4@ === o+ GO (BT o — o + GH BTl 5} (5 ~ En.

(14)
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But since G%* = G% and G (E,)n — G¥(E,)n = 27ip(E,)n = 2mi8(E, — Ea),
equation (14) becomes

dE T — T

di(E) =2 > (( 2 2’-)5(E — E) 421y |Ton*8(Ep — E)3(E — Eu)). (15)
5 i -

However, as a consequence of the unitarity condition ($57),, = 8,,, where § is the

S-matrix, defined by § = Q~1Q*, with Q% being the Mpller operators, defined by

QF =) ¥ ¢l

and of the relation Sy = 8, — 218(E4 — Ep)}T,p, the matrix elements of T satisfy the well
known relation (see e.g. [1])

Tpg =Ty = =271y TpuT8(E, ~ E;)  for E, = E,. (16)
R

Putting p = g = 2 and substituting in (15), we finally obtain

dI(E) = f%"i (— 21 Y Tnl*8(Ey — E2)S(E — E»)
2 A

+ 20 Y T P8(E, — E2)S(E - E,,)) =0 a7

which is the result we wished to prove.

3. Derivation of the current and conductance formulae

We now turn to our main task—the discussion of elastic transport through small structures.
The term ‘small structure” will be employed somewhat loosely to designate any structure
whose linear dimension in the direction of current flow is small compared with the inelastic
mean free path of the carriers in the bulk of the respective substance. A small structure
will therefore act as a predominantly elastic scatterer. We confine our analysis to the limit
when the small structure under study, as well as all other components of the circuit, of
which it is a part, acts as a purely elastic scatterer. Alse, we shall work with single-particle
states, assuming non-interacting carriers. (Self-consistency corrections can in principle be
introduced into the analysis, but this possibility will not be dealt with in this work.)

The above-defined conduction regime leads to a simple picture of the conducting circuit.
In this picture, the small structure, which from now on will be referred to as the ‘sample’,
is connected by semi-infinite (not necessarily perfectly conducting, but, necessarily for
this analysis, elastically scattering) leads to a system of heat-particle reservoirs, where all
inelastic scattering takes place and thermal equilibrium reigns.

In the case of two reservoirs, the configuration represents an ordinary battery, connected
across the sample. The difference between the absolute positions of the Fermi levels of the
two reservoirs is the battery voltage. (The absolute position of the Fermi level is known as
the electrochemical potential, as opposed to the position of the Fermi level relative to some
reference core state, which is known as the chemical potential.) The current is due to the
unequal filling of the right- and the left-going eigenstates of the lead—sample—lead system.

We now consider the three-component system, described above, as represented
schematically in figure 2. The two semi-infinite systems I and 2 are the leads and the
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finite system s is the sample. The three components are decoupled (which, once again,
in the orthonormal tight-binding picture employed here, means that all hopping integrals
between the components are zero), and the potential energy of the whole of 2 has been
adjusted so that the electrochemical potential of 2 lies an amount ¢W below that of 1,
where W will be the battery voltage. In the light of our previous discession, we include
in Hy a rigid shift of the potential of 2 relative to that of 1 in such a way that both 1 and
2 will be electrically neutral when we fill the eigenstates of the coupled lead—sample—lead
system with the non-equilibrium distribution, provided by the battery.” Let system 1 have
a continuous set of single-particle eigenstates {|¢)} with eigenvalues {E:} and system 2
have a continuous set of single-particle eigenstates {|¢)} with eigenvalues {E3}. Let s have
a discrete set of single-particle eigenstates {|{¢;)} with eigenvalues {E,}. Thus, the union
of the vector sets {|¢,}}, where n runs over all possible values of indices 1 and 2, and
{l¢s)} is the set of eigenvectors of the initial Hamiltonian, Hy. [{|¢s}}, {I¢s}}] is a complete
orthonormal set. The sets {[¢4}}, {I¢2}} and {|¢;)} are three mutoally orthogonal subsets of
the complete set of eigenstates of Hp, such as the ones discussed in the introduction.

1 gs 2 Figure 2, The uncoupled three-component system: the
semi-infinite systems 1 and 2 are the leads, and the finite
) system s is the sample.

We define the Green operators G** and the density-of-states operator p° for the initial,
decoupled system as before, by equations (1) and (2), respectively. This time, however, we
note that we can write G*(E) as

GO:!:(E)___G%E( |1} {1l + |ps) {¢bs| + [2) (2l ) as)
1352

E—Eytic E-E+xice E-Ey%ie

Now we define two projection operators, P; and P;, as follows

=Y "Il - ' (19)
1
=3 1)l | 20)
2
and observe that
P,G**(E) = G¥(E)P, = Jim Z E”"E il = G (E) @n
L :

where G¥* are the Green operators for system 1 only. Similarly
_ PG (E) = G™(EYP, = Gy (E) (22)
where Gg* are the Green operators for system 2 only. We also have
Pip™(E) = 0*(E)Pr = p{(E) (23)
and

Pp°(E) = p*(E)} P, = p}(E) 24)
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where p? and p? are the density-of-states operators for systems 1 and 2, respectively.

Now we couple the three systems, 1, s and 2, by an additive term V in the Hamiltonian
so that the new Hamiltonian H is (Hp =+ V), as in equation (4). Once again, V represents
the switching on of the hopping between the three systems, but may in general have other
non-zero matrix elements, such as on-site energy shifts, etc,

Again, we assume that V causes no level shifts, so that the eigenstates of H (which we
assume to be single-particle states) form a continoum in such a way that to every eigenstate
from the continuous part of the spectrum of Hy there corresponds exactly one eigenstate
of H with the same energy. We have assumed that there are no bound states among the
eigenstates of systems 1 and 2, or among the eigenstates of H, but, again, all results will
also hold when such bound states exist, so long as they lie outside the respective continua.

As before, the eigenstates of H, {|{;7)], arise from the continuum eigenstates of Ho,
{l¢n}}, via the Lippmann—Schwinger equation (5), which may equivalently be written as

[FY = (1 4+ GH(E) Vi) (25)

where G is the Green operator for the coupled system. (The Green operators G* and the
density-of-states operator p for the coupled system are defined as before, by equations (6)
and (7), respectively.) {|¥})} is a complete orthonormal set. Note that via the energy shift
eW in Hp, both G**(E) and G=(E) are implicitly functions of W.

We shall find it convenient to divide the set of states {]¥}} into two subsets: one of
them is {|¢;"}}, the eigenstates of H that have come from the states {|#)}, and the other
one is {];'}}, the eigenstates of H that have come from the states {|¢2)}. The states {{1}")}
are travelling to the right, and the states {|¢)}} to the left.

For the current operator, I, for the coupled system we once again choose the operator
that represents current infe system 2. I is given by equation (10}, which reduces to equation
(11) as before. Now we write (11} as

I =(g/tR)(PV —V Py) (26)

where P; is the projection operator defined in (20). Qur task this time is to calculate dig (E),
the sum of the expectation values of I' in all right-moving eigenstates of the coupled system
with energies in the interval [E, E + dE]. Since the right-moving states are the |y},
dIr(E) is given by

dE
dRR(E) =dE Y (¥ M p(E)¥7) = "—m—- > QIR VYT
[] 1

~ IV PN T o (BN, @7
We now require the obvious result

(WHeEN) = ($110°%(E)lgn) (28)
which can be proved with ease. Also, from equations (5) and {22)

Py = GRH(EDVI¥) (29)
and from (25)

Vigi) = t(E)lgr) (30)

where t(E) is defined by
tHE) =V +VGHE)V. (31
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bRemembering that G5 = GY~ and that G~ (E) — G*(E) = 27ipd(E). equation (27)
cComes

2
dIR(E) = dEZZ 3 (tile*(Egn) @it (EASEDHEDI). 32)
1

Owing to the term {¢;]|0°(E)|¢1) (which vanishes identically unless E; = E), we can
replace E; by E everywhere in (32). Also, since p° is diagonal in {|¢,)}, we can rewrite
(32) as

2
dIp(E) = dE== 3 (#116"(E) (1¢1><¢.1 +3y |¢1r>(¢1»l)r*‘(s)p2<5>t(5) 1)
1 11 _

2T
= "ETe > (6110 EY Pt (EYp( BNt (E)ldh ) (33)
1
Owing to (23), equation (33) becomes

. _
dIR(E) = dE—;,;f > 1l (EY (E) (B (E) ). (34)
1

Using the fact that p?lqbg) = p?lq&s) = 0, for all 2, s, we may rewrite (34) as

2
AIe(E) =dE—= Y (@lo}(E)NEIYEI(E) ). (35)
k=152

Finally, from (35) we obtain
AIR(E) = dEZ T (B (B)o(BY (B (36)

By the zero-current theorem, equation (17), dig(E) is exactly equal in magnitude to
dI(E), the sum of the expectation values of I in all left-moving eigenstates for the coupled
system with energies in the interval [E, E-+dE]. (To see that (17) still holds, imagine only
coupling s and one of the leads first, thereby re-creating the starting point of the analysis
leading to (17), and then repeating that analysis.) Now we fill the right-going states, {|#;}},
with a Fermi-Dirac distribution f (E), and the left-going states, {|;"}}, with a Fermi-Dirac
distribution f(E + eW). The total current 7 in the system is

I= f [IR(E) £ (E) — [AIL(E)| f(E + eW)]

= 22 [ Tl EYAERENIE) - FE+eWNEE. D

Equation (37} is the most general expression for the current across the sample at an applied
battery voltage of W, which is exact in W (via the W dependence of G**(E) and G*(E)),
the coupling V and the temperature, within the limits of the conduction regime, specified
earlier (which, once again, assumes purely elastic scattering in all parts of the circuit, and
single-particle states).

As was stated earlier, the above derivation of (37) is based on an orthonormal tight-
binding picture. At the same time, the idea, outlined in the introduction, is perfectly general. -
For the sake of illustrating its generality, and for the sake of completeness, we shall now
discuss briefly the implementation of this idea in the continuum |r} representation,
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In this discussion, we shall regard the sample as being a part of one of the leads. Thus,
the set-up we envisage corresponds to figure 1 with systems 1 and 2 being two semi-infinite
solids, separated by a gap. Let C(x, y, 2) = O define an open surface lying between systems
1 and 2. Consider the potential barrier given by w8(C), where o is a parameter and § is the
Dirac delta function. Let the initial Hamiltonian Fy include this barrier with some finite «.
The eigenstates of Hy fall into two classes: right-moving ones and left-moving ones. The
right-moving ones consist of a wave incident in system 1, partially reflected back into 1 and
partially transmitted into 2. Conversely, the left-moving ones consist of a wave, incident in
system 2, partially reflected back into 2 and partially transmitted into 1. Let the right-moving
eigenstates of Hy be the set {|¢}} and the left-moving ones be the set {|¢)}. Exactly as
before, {|¢r)} and {|¢}} are mutually orthogonal and their union, the set of eigenstates of
Ho, {l#.}}, n = 1, 2, is complete. Let the coupling V, introduced before, correspond to the
removal of the barrier é(C), so that the final Hamiltonian, H = Hy+ V, describes the fully
coupled system. We can now repeat every single step of the derivation presented above and
thus calculate the transport between {|¢r}} and {|#,}} due to some filling of the eigenstates
of H. All results are going to be implicit functions of the parameter «. In the limit @ — oo,
when the initial barrier becomes impenetrable and the transmitted parts of {j¢;)} and {|¢}}
become equal to zero, the transport between the two sets of states {|¢;}} and {|¢»)} becomes
equal to the transport between the two spatial regions, represented by systems 1 and 2. In
this limit, equation (37) coincides with the result of the recent time-independent study by
Pendry et al [2].

Equation (37} is also in agreement with the results of a very recent time-dependent
calculation [3], in which the coupling V is switched on adiabatically, and the system is
allowed to reach a steady state,

Before carrying on with our main discussion, we shall compare the present formalism
with the well known Bardeen transfer Hamiltorian formalism [4] (BTHF). The BTHF is a
first-order time-dependent perturbation calculation in the continuum |r) representation of
the current between two weakly coupled semi-infinite metals 1 and 2 and is based on a
very different starting point from one employed in this paper. The essence of the BTHF
is the following. Let {|A,}} be the set of eigenstates of metal 1 in the absence of metal
2 and {|A;)} be the set of eigenstates of metal 2 in the absence of metal 1. Thus, {|A}}
and {|A2)} are both complete and therefore not mutnally orthogonal. (Note the difference
from the sets {|¢)} and {|¢)}.) An electron is released from a state [A;). Its time-evolved
state vector is then expressed in terms of the complete set {|A,}} and the transition rate into
each state [As) Is computed to first order in the hopping integral between |A,} and jA3).
Thus, the BTHF can only be used in the weak-coupling limit. We now return to our main
discussion.

Differentiating (37) with respect to the battery voltage W yields the differential
conductance of the circuit, G, which is a function of W itself and of the temperatize, 8

d
G0 = o =22 f ({f(E) ~ FE + W)l THANEN BYR(E)(B)]
— ef (E + eW) Trlp%(E)e! (E)pg(E)r(E)]) dE. (38)

Taking the limit W — 0, we obtain

2T 2
G(0,8) = -hi f [—F(EYI T [0 E)(E) oS (EDt(E)] dE. 39)
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In the limit & = 0, — f’(E) becomes 25(E — Eg), with spin degeneracy, and hence
G(0,0) = (4me?/h) Telp? (Er)t (Er)p3( Er)t(Er)] (40)

where Eg is the Fermi energy for the coupled system in the absence of an applied voltage.

Equation (40) is a generalization of the Landauer conductance formula [5-10], because
the derivation of (40) is based on no assumptions about the leads, other than that they have
stationary states,

In deriving (40), we assumed that the electrochemical potential drop between the leads
in the steady state is the same as that between the reservoirs, W, and in defining G we
took the derivative of I with respect to W. Now, it is well known {5-10] that, in general,
charge neutrality in the leads requires that the electrochemical potential drop (or the rigid
shift included in Hp) between the leads, Wiea4s, be given by a function of W, F(W), where
F (W) depends on the transmission properties of the sample. Explicit expressions have been
obtained [5-10] for

‘}}To(d Wieads /G W)

at 6 = 0 for the case of perfectly conducting leads.

If Wieags 7 W, then in defining G we have a choice between differentiating / either with
respect to W or with respect to Wiy, leading to different results. In particular, defining
Gleads 35 AT /AWy, the analogue of (40) is

Greaas(0, 0) = (dme?/h) Trlp? (Ep)tT (Er)pd( Er)t(Eg)1/ (A Wieass /AW ) w—o- (41)

It is worth pointing out that there is no contradiction between equations (40) and (41):
both have been obtained from the same expression for the current, equation (37), and
we can unambiguously go from G(0,0) to Gieyy(0,0) and vice versa by the conversion
factor (dWyeays/dW)lw_o. In many important cases, however, such as conduction between
two semi-infinite 3D systems via a finite sample, Wiy, will be equal to W with a unique
definition of the conductance. -

4. Applications

For purposes of illustration we now apply equation (40) to three physical situations: the
one-atom contact, the disordered, finite 1D chain, and the generalized stacking fault. In all
of them we shall use a 1-S nearest-neighbour orthonormal tight-binding (TB) model. Also,
in all of them, the leads 1 and 2 will be represented by semi-infinite perfect crystals.

We shall require some preliminary results. A semi-infinite perfect crystal can be
represented by a stack of 2D atomic layers, as illustrated in figure 3. Each of these layers
in isolation has a set of eigenstates {|g}} with eigenvalues {E(g)}, where g is a transverse
wavevector. If |R,) is a 1-S orbital on the nth atom in the layer, where R, is the position
vector of the atom, then

1 .
g} = A Z exp(ig + R,)IR,) (42)

where 1/,/N» is a normalization factor. Both {|g)} and {|R,)} are complete orthonormal
sets for the layer.
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o -0 o o——-

Figure 3. A semi-infinite perfect crystal, Figured4. A semi-infinite chain of 20 states with transverse wavevector
viewed as a stack of 2D atomic layers. q.

Let now |!, g} stand for the 2D state of wavevector g on the !th layer of the crystal,
{l,g)} is an orthonormal basis for the semi-infinite crystal. Let |R.} by a 1-S orbital on
the nth atom in the /th layer, with position vector Rf,. Then |, g) is given by

1
ha) = 5 > explig - RDIRY). 43)

Owing to the transverse transiational symmetry of the semi-infinite crystal, the eigenstates
for the crystal will contain only 2D states with the same g

Wig) =D _ Crigll,q) (44)
I

where {{(q)) is an eigenstate for the crystal with transverse wavevector ¢, and {Ci(g)} are
expansion coefficients.

Consequently, if g 5 ¢’, then {{,¢|H|m, g’} and {{, ¢|G%|m, q’), where H and G* are
the Hamiltonian and the Green operators for the crystal, respectively, will be identicaily
equal to zero for all £, m. We assume that {{, g|H |m, g} vanishes unless m =, /3 1. When
m = I, the matrix element becomes the on-layer energy E(g). For {{,q|H|I + L, q}, we
introduce the symbol A(g). For (!, g|G*=(E)|m, g), we introduce the symbol Gﬁn(E,q).
We now calculafe Gg‘o(E ).

Consider a semi-infinite chain of 2D states with transverse wavevector ¢, as illustrated
in figure 4. We can construct the above chain from the state |0, g} in isolation and the semi-
infinite chain starting at |1, g} by the introduction of a perturbation H’, coupling |0, g} to
11, ¢}, as illustrated in figure 5. Let sitnation (2) have a Oreen operator G*, and situation
(b) a Green operator G*. We have

0.q|H'll.q) = Hy (@) = Alg) (45)

1
0+ — 0+ = lim ————
0. 416 (E)0,4) = G (E.0) = Jim, g (46)

GH(E,q) = G (E.q). (47
From the Dyson eguation

Gt =6% + ™ H'G (48)
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O e O -0 — — - )]
10,8} 11,9} 12,9} 3.4
Figure 5. A semi-infinite chain of
B 2D states of transverse wavevector ¢
~ b. and a p state with ¢ in isolation (@)
Oo——0 1Y 0-—- ®)  ysed to generate a new serni-infinite
chain of 2D states with g (&) by the
0,9} |19} 12,4) B4 introduction of a coupling H’.

Y Y:
L z Figure 6. A single atom 5 between two identical
1 2 semi-infinite FCC crystals { and 2, cut along their
s : (11 1) planes. The hopping integrals between

s and its three nearest neighbours in 1 are the
same and equal to jq, and the hopping integrals
between s and its three nearest neighbours in 2
are the same and equal to yg.

for G§,(E, g) we obtain
Gh(E.q) = G (E,q) + Gof (E, ) Hy (@)GY (E,q) Hy(@)GH(E . 9)
which, using (45)+47), can be solved for GS"O(E s q)

[E — E(g)] + JI[E — E(g)]* — 4A(@)A(g)"} 9)
2A(g)AQg)y

disregarding the special case when both (E — E(g)) and A(g)A(q)* are zero, which requires
special care. Now we have to choose between the two solutions for GS’O(E, q).

In the case when the expression under the square root in (49} is negative, we choose the
solution with the minus sign, since we want the imaginary part of G§,(E, g) to be negative.

In the case when the expression under the square root is positive (so that the imaginary
part of Gg,‘”o(E, g) is zero), we choose the solution that tends to G&*(E, q)=1/[E—E(g)]
as A(g)A(g)* tends to zero. In other words, we choose the plus sign if [E — E(g)] < 0
and the minus sign if [E — E(g)] > 0.

Having thus computed G (E,g), we can now calculate the matrix element of G+
between atomic sites # and # on the surface of the semi-infinite crystal

(RIGH(E)RY) = Y _(RS|I, q¥l, gIGH (BN, ) ', IRS)
g

1
= 7, 2 {explig - Ry — ROIICH(E. ). 50)
q

But since ¢ is a continuous label, we can replace (1/N3) 3_, by [e/(27)?] f d°g, where &
depends on the geometry of the 2D layers, and the integral is taken over the first Brillouin
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zone for the layer. Thus, (50) becomes
(RYIGH(E)IRY) =

T [texotig - &% - RODGHE DPg. D)

Finally, we introduce y as the hopping integral (matrix element of A) between nearest-
neighbour atomic sites in the perfect crystal and note that, in a 1-S orbital TB mode, both
H and G* are symmetric matrices in the atomic basis {|R!)}.

Now that we know how to calculate the matrix elements of the Green operator for
a semi-infinite perfect crystal between sites on the surface in a 1-S nearest-neighbour TB
model, we proceed with the three illustrative examples.

4.1, The one-atom contact

The reader will be familiar with previous TB calculations on the one-atom contact [11~13]
in the context of the experiments by Gimzewski and Moller [14].

In the present calculation the sample s is a single atom and the leads 1 and 2 are identical
semi-infinite perfect FCC crystals cut along their (11 1) planes, The atom s is between 1
and 2 and is equidistant from its three nearest neighbours on both crystal surfaces. Let
[{I1}}, |s}, {12)}] be the orthonormal atomic basis with [1) being a 1-S orbital in crystal 1, |s}
being the 1-S orbital on the sample atom and [2) being a 1-S orbital in crystal 2. V couples
s to its three nearest neighbours on the surfaces of 1 and 2. Thus, (1]V]s) = (s|V[1} =1
if |1) is the 1-S orbital on one of the three nearest neighbours of s on the surface of lead
I and (1|V|s} = {s]V|1) = O for all other [1}. Similarly, 2|V[s) = {s]V|2} = p, if |2}
is the 1-S orbital on one of the three nearest neighbours of s on the surface of lead 2 and
{2|V|s} = (s|V|2} = O for all other |2). This situation is presented diagrammatically in
figure 6. Also, {s]Vs) =

Taking the trace in the atomic basis and remembering that p?;z = (Gl,];_2 - G?;) [(2mi),
and that G?f; are symmetric matrices in the atomic basis, we obtain from (40)

2
G(0,0) = ;_n“ Y ml{GTHER I Im{ 2163 (E) | ) yEvEIIGT (BRI (52)
[ 4
where indices 1 and 1’ run over the three nearest neighbours of s on the surface of lead
1, and similarly for indices 2 and 2’ and the surface of 2. Let [y|(1|G°+ (Ep)ly =g =
|yl(2lG°+(E;=)|2) where |1) and |2) are sites on the surfaces of leads 1 and 2 respectively,
and y, once again, is the hopping integral between nearest neighbours in the perfect crystals.
Also, let |y [{UGYH(ERL') = f = |¥1(21G5T (Ep)|Z)), where |1}, [1') and [2), |2') are pairs
of nearest-neighbour sites on the surfaces of leads 1 and 2, respectively. Let A1 = 1 /1¥]
and Az = ya/ly|. Solving the Dyson equation for {s|G*(Er)|s} and substituting in (52), we
find
2 21232
G0,0) = e 36[Imgg +§f)] ATA3 (53)
Th A =37+ 235 g+ 22

where A = Eg/|y|. The on-site energy Ey is zero on all atoms: Ey = (1|H|1} = (s|H[s) =
(2[H|2) =0, forall 1, 2.

Since A and Ay depend on the distances of s from the two crystal surfaces, equation
{53) enables us to compute G(0, 0) as a function of the position of s between the crystals.
In fact, assuming all hopping integrals to be the same as those between 1-S orbitals on
isolated pairs of hydrogen-like atoms, we can calculate A) and A, analytically:

Mz = —expl(a/ro)(1 — 1 D1 41 (_:_z/;;i:x -

(54)
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where a is the nearest-neighbour separation in the crystals, ry is the Bohr radius of the
1-S orbital and z; ; are the distances of s from its nearest neighbours on surfaces 1 and 2,
respectively, in units of a.

Choosing A to correspond fo half-filled bands in the crystals, computing g and f and
setting Ay = Az = —1 (so that s is stably bonded to both crystal surfaces) we find a zero-
voltage, zero-temperature conductance, G(0, 0), of 1.0 in units of e2/xA. In fact, inspection
of (53) shows that ¢?/7h is the maximum possible value of G(0, 0).

4.2. The disordered 1D chain

Now the sample s is a 1D atomic chain containing N atoms. The atoms in the chain are
labelled as s;,53,...,sy. The leads 1 and 2 are once again identical semi-infinite perfect
FCC crystals cut along their (11 1) planes. V couples §; to its three nearest neighbours
on the surface of lead 1, and sy to its three nearest neighbours on the surface of lead
2. We imagine s; to be stably bonded to crystal 1 and sy to be stably bonded to
crystal 2. In other words, if [{|1}}, {Iss}}, {|2}}] is the orthonormal atomic basis, then
(11V]s1) = (:1|1V]1) = (2|Vsy) = (sn|V|2} = y if |1} and [2) are among the respective
groups of nearest neighbours of s. All other matrix elements of V are zero. This situation
is presented in figure 7.

Figure 7. A 1D chain of N atoms, 54, 52, ..., sy, between two identical semi-infinite FOC crystals
1 and 2, cut along their (11 1) planes; $ is stably bonded to the surface of 1 and sy is stably
bonded to the surface of 2.

Taking the trace in the atomic basis, and employing the same definition of g and f as
before, we obtain from (40)

G(0, 0) = (¢*/xh)36[Im(g + 21)1*|{s: |G (Ep)Isw) Iy I°. (55)
Solving the Dyson equation for (5:|G*(Eg)|sn}, we get
[y (st IG* (Ep)Isn} = [v[{s1/G(Ep)IsnH1 — 3(g + 21)ivIl{s1IG* (Er) 1)

+ {sw1G " (Er)lsn)] 4 9(g + 27 P 1y PL{s11G™ (Er)IstHsw |G (Er)lsw)

— (stIG* (Epylsn )1 (56)

We introduce the notation By,(n)/ly| for the on-site matrix element of the (+) Green
operator on the first site (‘b’ stands for ‘beginning’} of a 1D chain of length r atoms,
By(n)/ty| for the matrix element of the (4) Green operator between the first and the last
sites (‘e’ stands for ‘end’) of a 1D chain of length n, and Be.(n)/|y] for the on-site matrix
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element of the (-+} Green operator on the last site of a 1D chain of length n, at £p. Thus,
for the complete chain we have

Iy 1{s11G* (Eg)ls1} = Bup(N)
[71(s11G% (Er)|sw) = Bre(IV)
[y USIG ™ (Eg)Isn) = BeelN).

Suppose we construct the complete chain starting from a single atom, s;, and adding
the rest, s;, s3, etc, one at a time. Let the coupling of s, to s, by A{n) in units of |y|.
Let the on-site energy on s, be e(n} in units of |y|, Then, solving the Dyson equation at
each step, we obtain the iterative equations

Bee(n) = 1/[A — €(n) — A(n)? Bee(n — 1)} (57)
Boe(n) = Boe(nt — 1)A(%) Bee () (58)
Bup(n) = Bup(n — 1) + Bue(n — 1)A(n) Bpe(n) (59

where, once again, A = Eg/|y|. Starting with Be.(1) = Bpe(l) = Byp(l} = 1/A, we
can caleulate Bee(N), Bu.(N) and By(N) from equations (57)—(59). Hence, from (56)
we obtain |y |{s1)G*(Ep)Isy} and hence, from (55), G(0, 0). The value of A is chosen to
correspond to half-filled bands in the crystals.

First, we look at the perfect chain, defined by A(n} = —1,e¢(n) = ¢, for all n.
Computation shows that, when the chain is made of the same atoms as the crystals, i.e.
€ =0, G(0, 0) remains equal to 1.0 in units of &*/x% for any value of N. (We have studied
the case N < 10000.) G(0,0) £ 1.0¢%/ah for all other values of €. In particular, for
€>A+20re < A—2, G(0,0) is essentially zero for N = 30. The reason for this is that
the band for the perfect chain lies in the energy range [¢ — 2,6 + 2] and if ¢ > A 42 or
€ < A — 2, then there are no eigenstates for the chain at Ef.

Now we investigate the disordered chain. We shall consider three types of disorder:
(i) pure positional, with A(n) being a random variable and €(n) being constant; (ii) pure
compositional, with A(n) being constant and e(n) being a random variable; and (iii)
combined, with both A(r) and ¢(n) being random variables. In all three cases, we want to
study G(0, ) as a function of N. In our simulations we use a random number generator,
ran(x), to generate random reals in the interval [0, 1).

For producing disorder (i), we use

Mn) = ~[0.5 + 0.5ran(x}] , (60}

to generate a rectangular distribution for A{r) with —A(n) € [0.5, 1). Also, we sete(n) =0,
for all n.
For disorder (ii), we use

e(n) =1 —2ran(x) (61}

to produce a rectangular distribution for e(n) with e(n) € (—1, 1), and set A(n) = —1, for
all n.

For disorder (iii), we use generating procedures (60) and (61) ir conjunction with each
other.

In all three cases, G(0,0) exhibits extremely unstable behaviour with respect to
the random configuration. In fact, for a fixed N, G(0,0) may vary by several orders
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Figure 8. Plot of {(—InG(0, 0)} (vertical axis) versus
N (horizontal axis) for various types of disorder in a 1D
chain of length N. (O) Case (i), pure positional disorder

with —i(n) € {0.5, 1) and e(n) = 0, for all n. (+) Case
(ii}, pure compositional disorder with A(n) = —1, for
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Figure 9. Plot of [({~In G(0, 0)}]'/2 (vertical axis) ver-
sus u (horizontal axis) for varying pure compositional
disorder in a 1D chain of length N = 300, with e{n) €
{—u, ul, (¢} = 0 and ole(m)] ~ u, A(n) = —1, for

all #. G{0,0) is in units of e2/nA.

all n, and () & (=1,1]. (a) Case (iii), combined
disorder with —A(n) € [0.5,1) and e(n) & (—1,1].
G(0, 0) is in nnits of e2/xh.

of magnitude with the random configuration. We are, therefore, compelled to use
configurational averages.

We have computed (— In G(0, 0)}, where the average is taken over 200 configurations
and G(0, 0) is in units of ¢%/mh, as a function of N. The results are presented in figure 8.
The straightness of the lines demonstrates the exponential spatial localization of the carriers
in the disordered 1D region.

Next, we look at the dependence of G(0, 0) on the extent of the disorder for a fixed
N. We consider two cases: (1v) varying pure compositional disorder, and (v) varying pure
positional disorder.

For (iv) we use

e(n) = u[l — 2ran(x)] 62)
producing a rectangular distribution for e(n) with e(n) € (—u,u], {e(n)) = O and
ole(n)] ~ u, where o stands for standard deviation. We set A(n) = ~1, for all n. In
figure 9 we have plotted [{—In G{(0, 0))]/? versus u for N' = 300, where the averages of
—1n G(0, 0) are taken over 500 configurations, and G(0, 0) is in units of e2/7#A. The results
suggest that G(0, 0) decreases exponentially with the variance, o?, of €(n) for a fixed N.

For (v) we use

A(n) = —[1 — uran(x)] (63)
producing a rectangular distribution for A(r) with —A(m) € (1 —u, 1], (—A(m)} =1 —u/2
and c[A(n)] ~ u. We set ¢(n) = 0, for all #n. In figure 10 we have plotted
(1 — u/2D[{~ InG(0, 0)]'/* versus u for N = 300, where, once again, the averages of
—In G(0, 0) are taken over 500 configurations, and G(0, 0) is in units of ¢ /nf. The results
suggest that for small o[A(n)], G(0, 0) decreases exponentially with o2[A(n)]/{A(n))? for
afixed N.



2404 T N Todorov et al

g 1
4 2.
5 o)
o]
2 ©
1 g ) Figure 10. Plot of ¢1—u/2)[{— In G0, 0))1/2 (vertical
& axis) versus u (horizontal axis) for varying pure
0 i positional disorder with —A(m) € (1 —u, 1], {~A(n)) =

) 1 —=u/2and c[A(n)] ~u, €(n) =0, forall #, in a 1D
¢ 0.1 0.2 03 0.4 0.5 0.6 0.7 chain of length N = 300. G(0, 0) is in units of e*/x#.
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Figure 11. Two semi-infinite crystals,
shifted relative to each other along the
2 3 4 intesface between them,

4.3. The generalized stacking fault

In this example there is no sample. In other words, the leads 1 and 2 are coupled directly to
each other. The leads are again identical, semi-infinite perfect FCC crystals, cut along their
(11 1) planes, shifted relative to each other along the (11 1) planes by an arbitrary amount.
Again, the crystals can be thought of as stacks of 2D atomic layers. We label these layers
by an integer n € {—00, -+-00), 50 that all layers with n < 1 belong to lead 1 and all layers
with n > 2 belong to lead 2 (figure 11).

Figore 12. Conductance per atom (z axis) versus
relative displacement (xy plane) of two identical semi-
infinite FCC crystals, cut along their (1 1 1) planes. The
x axis is the displacement along [01 1] in units of the
nearest-neighboty separation a in the perfect crystal,
and the y axis is the displacement along [21 1] in units
of a.

We shall employ the orthonormal basis {|{, g}}, where, again, |/, ¢} is a 2D eigenstate of
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wavevector g in the /th layer. V couples each atom in layer 1 to its three nearest neighbours
in layer 2. Since V does not disturb the transverse translational symmetry of the system,
H and G* are diagonal in g, i.c. if ¢ # ¢’, then {{,¢|H|m, ¢’} and (!, g|G*|m, ¢’} vanish
identically for all {, m. Thus, the only non-zero matrix elements of V are (1,g|V|2, g) and
{2,qlV|1, g}. Taking the trace in the basis {{{, g)}, we obtain from (40)

2
G(0.0) = =43 {ImG (Be I} ltz1 (Br. P (64)
q

where we have used the fact that G?f'(Ep, q)= Gg;(Ep,q). Solving the Dyson equation
t=V+Veh: ' ' (65)

for t51(Er, ¢), substituting in (64}, dividing (64) by N, to obtain the conductance per atom
in the interface and replacing (1/N2) 3, by [¢/(27)?] f d*q, we find

Loog & te [ miGHEn P Va@l o

e . 66
Mo T kR ) 1= 63 B P IV @PP ©

Er is again chosen to correspond to half-filled bands in the crystals. The separation of
crystals 1 and 2 is chosen in such a way that the distance between each atom in layer 1
and its nearest neighbour in layer 2 remains constant and equal to the nearest-neighbour
separation & in the crystals. For the hopping integrals between atoms in layer 1 and their
nearest neighbours in layer 2, we use the scaling law, specified in equation (54).

Computation of {66) shows that G(0,0)/¥, has 2 maximum when the two semi-
infinite crystals are stably bonded (so as to form one infinite perfect crystal), i.e. when
Vi2(g) = A{g), and has a minimum when the two crystals are displaced in such a way that
each atom in layer 1 is directly opposite an atom in layer 2. The maximum conductance
is 0.81£%/mh per atom. This result is direct evidence for quantum interference. In the
one-atom contact calculation, we found a conductance of 1.0¢*/a% when the single atom
was stably bonded to both crystal surfaces. If the conductance were simply proportional to
the number of one-atom contacts between the two crystals, then the maximum conductance
per atom in the stacking fault calculation would also be 1.0¢%/mh. The fact that it is not
means that there is interference between the different one-atom contacts, making up the
interface between 1 and 2. G{0, 0)/N, for all other stacking fault configurations depends
on a/ro, where rg is the Bohr radius of the 1-S orbital. With a/ry = 2, we find a minimum
conductance per atom of 0.65¢%/m#, yielding a contrast of about 20%. In figure 12 we
have plotted the conductance per atom, G(0, 0)/N,, in units of ¢?/x# as a function of the
displacement of crystal 2 relative to crystal 1 with a/rg = 2.

5. Summary

In conclusion, we may say that we have at our disposal a methodology with the aid of
which the computation of the elastic conductance of a wide range of structures becomes
easy. The results of the analysis emphasize the point that in elastic transport the conductance
of a circuit, containing a sample, is determined by the coupling of the sample to the other
components of the circuit, and by the nature of these components, as well as by the sample
itself. The method can be extended to include self-consistency corrections to the non-
interacting single-particle states {)i;7}}, or, equivalently, to the matrix elements of G* by
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solving the Lippmann-Schwinger or the Dyson equations, respectively, with some self-
consistent field potential.

The results of this work will be applied in the future to the study of the conduction
properties of the tip—surface contact both in the tunnelling and in the contact regimes for the
scanning tunnelling microscope {ST™). This study will be based on the molecular dynamics
simulations research conducted at this department [15].
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